《高考试卷》2023年普通高等学校招生全国统一考试(湖北卷)数学文科试题参考答案.doc
-
资源ID:77498757
资源大小:978.04KB
全文页数:6页
- 资源格式: DOC
下载积分:20金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
《高考试卷》2023年普通高等学校招生全国统一考试(湖北卷)数学文科试题参考答案.doc
2014年普通高等学校招生全国统一考试(湖北卷)数学(文史类)试题参考答案一、选择题:1C 2B 3D 4C 5C 6A 7D 8A 9D 10B二、填空题:111800 12 13或 141067 15 16()1900;()100 17();()三、解答题:18() . 故实验室上午8时的温度为10 . ()因为, 又,所以,. 当时,;当时,. 于是在上取得最大值12,取得最小值8. 故实验室这一天最高温度为12 ,最低温度为8 ,最大温差为4 . 19()设数列的公差为,依题意,成等比数列,故有学科网, 化简得,解得或. 当时,;当时,从而得数列的通项公式为或. ()当时,. 显然,此时不存在正整数n,使得成立. 当时,. 令,即, 解得或(舍去),此时存在正整数n,使得成立,n的最小值为41. 综上,当时,不存在满足题意的n;当时,存在满足题意的n,其最小值为41. 20证明:()连接AD1,由是正方体,知AD1BC1, 因为,分别是,的中点,所以FPAD1. 从而BC1FP. 而平面,且平面,第20题解答图QBEMNACD()FP故直线平面 ()如图,连接,则. 由平面,平面,可得. 又,所以平面. 而平面,所以. 因为M,N分别是,的中点,所以MNBD,从而. 同理可证. 又,所以直线平面. 21.()函数的定义域为因为,所以 当,即时,函数单调递增; 当,即时,函数单调递减 故函数的单调递增区间为,单调递减区间为 ()因为,所以,即,于是根据函数,在定义域上单调递增,可得,故这6个数的最大数在与之中,最小数在与之中 由及()的结论,得,即由,得,所以;由,得,所以综上,6个数中的最大数是,最小数是 22()设点,依题意得,即, 化简整理得. 故点M的轨迹C的方程为 ()在点M的轨迹C中,记,.依题意,可设直线的方程为 由方程组 可得 (1)当时,此时 把代入轨迹C的方程,得.故此时直线与轨迹恰好有一个公共点. (2)当时,方程的判别式为. 设直线与轴的交点为,则由,令,得. ()若 由解得,或.即当时,直线与没有公共点,与有一个公共点,学科网故此时直线与轨迹恰好有一个公共点. ()若 或 由解得,或.即当时,直线与只有一个公共点,与有一个公共点.当时,直线与有两个公共点,与没有公共点. 故当时,直线与轨迹恰好有两个公共点. ()若 由解得,或.即当时,直线与有两个公共点,与有一个公共点,故此时直线与轨迹恰好有三个公共点. 综合(1)(2)可知,当时,直线与轨迹恰好有一个公共点;当时,直线与轨迹恰好有两个公共点;当时,直线与轨迹恰好有三个公共点. 更多精彩内容: (在文字上按住ctrl即可点击查看)2014年高考全国各省市高考作文题目2014年全国各省市高考试题及答案解析2014年高考成绩查询时间及入口2014年高考分数线及历年分数线汇总2014年全国各地录取结果查询高考网特别策划致我们终将逝去的高考