《高考试卷》2023年辽宁高考理科数学卷(含详细答案解析).doc
学而思教育·学习改变命运 思考成就未来! 高考网2009年普通高等学校招生全国统一考试(辽宁卷)数学(理工农医类)一- 选择题(每小题5分,共60分)(1)已知集合M=x|3<x5,N=x|5<x<5,则MN=(A) x|5x5 (B) x|3x5(C) x|5x5 (D) x|3x5【解析】直接利用交集性质求解,或者画出数轴求解.【答案】B (2)已知复数,那么=(A) (B) (C) (D)【解析】【答案】D (3)平面向量a与b的夹角为, 则 (A) (B) (C) 4 (D)12【解析】由已知|a|2,|a2b|2a24a·b4b244×2×1×cos60°412 【答案】B (4) 已知圆C与直线xy=0 及xy4=0都相切,圆心在直线x+y=0上,则圆C 的方程为(A) (B) (C) (D) 【解析】圆心在xy0上,排除C、D,再结合图象,或者验证A、B中圆心到两直线的距离等于半径即可.【答案】B(5)从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有(A)70种 (B) 80种 (C) 100种 (D)140种 【解析】直接法:一男两女,有C51C425×630种,两男一女,有C52C4110×440种,共计70种 间接法:任意选取C9384种,其中都是男医生有C5310种,都是女医生有C414种,于是符合条件的有8410470种.【答案】A(6)设等比数列 的前n 项和为 ,若 =3 ,则 = w.w.w.k.s.5.u.c.o.m (A) 2 (B) (C) (D)3【解析】设公比为q ,则1q33 Þ q32 于是【答案】B(7)曲线y= 在点(1,1)处的切线方程为(A)y=x2 (B) y=3x+2 (C)y=2x3 (D)y=2x+1【解析】y,当x1时切线斜率为k2【答案】D(8)已知函数=Acos()的图象如图所示,则=(A) (B) (C) (D) w.w.w.k.s.5.u.c.o.m 【解析】由图象可得最小正周期为 于是f(0)f(),注意到与关于对称 所以f()f()【答案】B(9)已知偶函数在区间单调增加,则满足的x 取值范围是(A)(,) (B) ,) (C)(,) (D) ,)w.w.w.k.s.5.u.c.o.m 【解析】由于f(x)是偶函数,故f(x)f(|x|) 得f(|2x1|)f(),再根据f(x)的单调性 得|2x1| 解得x【答案】A10)某店一个月的收入和支出总共记录了 N个数据,。,其中收入记为正数,支出记为负数。该店用下边的程序框图计算月总收入S和月净盈利V,那么在图中空白的判断框和处理框中,应分别填入下列四个选项中的(A)A>0,V=ST (B) A<0,V=ST (C) A>0, V=S+T w.w.w.k.s.5.u.c.o.m (D)A<0, V=S+T【解析】月总收入为S,因此A0时归入S,判断框内填A0 支出T为负数,因此月盈利VST【答案】C(11)正六棱锥PABCDEF中,G为PB的中点,则三棱锥DGAC与三棱锥PGAC体积之比为(A)1:1 (B) 1:2 (C) 2:1 (D) 3:2【解析】由于G是PB的中点,故PGAC的体积等于BGAC的体积ABCDEFH 在底面正六边形ABCDER中 BHABtan30°AB 而BDAB 故DH2BH 于是VDGAC2VBGAC2VPGAC【答案】C(12)若满足2x+=5, 满足2x+2(x1)=5, +(A) (B)3 (C) (D)4【解析】由题意 所以, 即2 令2x172t,代入上式得72t2log2(2t2)22log2(t1) 52t2log2(t1)与式比较得tx2 于是2x172x2【答案】C(13)某企业有3个分厂生产同一种电子产品,第一、二、三分厂的产量之比为1:2:1,用分层抽样方法(每个分厂的产品为一层)从3个分厂生产的电子产品中共取100件作使用寿命的测试,由所得的测试结果算得从第一、二、三分厂取出的产品的使用寿命的平均值分别为980h,1020h,1032h,则抽取的100件产品的使用寿命的平均值为 h.【解析】1013【答案】1013(14)等差数列的前项和为,且则 【解析】Snna1n(n1)d S55a110d,S33a13d 6S55S330a160d(15a115d)15a145d15(a13d)15a4【答案】(15)设某几何体的三视图如下(尺寸的长度单位为m)。w.w.w.k.s.5.u.c.o.m 则该几何体的体积为 w.w.w.k.s.5.u.c.o.m 【解析】这是一个三棱锥,高为2,底面三角形一边为4,这边上的高为3, 体积等于×2×4×34【答案】4(16)以知F是双曲线的左焦点,是双曲线右支上的动点,则的最小值为 。【解析】注意到P点在双曲线的两只之间,且双曲线右焦点为F(4,0), 于是由双曲线性质|PF|PF|2a4 而|PA|PF|AF|5 两式相加得|PF|PA|9,当且仅当A、P、F三点共线时等号成立.【答案】9(17)(本小题满分12分)如图,A,B,C,D都在同一个与水平面垂直的平面内,B,D为两岛上的两座灯塔的塔顶。测量船于水面A处测得B点和D点的仰角分别为,于水面C处测得B点和D点的仰角均为,AC=0.1km。试探究图中B,D间距离与另外哪两点间距离相等,然后求B,D的距离(计算结果精确到0.01km,1.414,2.449)w.w.w.k.s.5.u.c.o.m (17)解:在ABC中,DAC=30°, ADC=60°DAC=30,所以CD=AC=0.1 又BCD=180°60°60°=60°,故CB是CAD底边AD的中垂线,所以BD=BA, 5分在ABC中,即AB=因此,BD=故B,D的距离约为0.33km。 12分(18)(本小题满分12分)如图,已知两个正方行ABCD 和DCEF不在同一平面内,M,N分别为AB,DF的中点 。(I)若平面ABCD 平面DCEF,求直线MN与平面DCEF所成角的正值弦;(II)用反证法证明:直线ME 与 BN 是两条异面直线。w.w.w.k.s.5.u.c.o.m (18)(I)解法一:取CD的中点G,连接MG,NG。设正方形ABCD,DCEF的边长为2, 则MGCD,MG=2,NG=.因为平面ABCD平面DCED,所以MG平面DCEF,可得MNG是MN与平面DCEF所成的角。因为MN=,所以sinMNG=为MN与平面DCEF所成角的正弦值 6分解法二: 设正方形ABCD,DCEF的边长为2,以D为坐标原点,分别以射线DC,DF,DA为x,y,z轴正半轴建立空间直角坐标系如图.则M(1,0,2),N(0,1,0),可得=(1,1,2). 又=(0,0,2)为平面DCEF的法向量,可得cos(,)=· 所以MN与平面DCEF所成角的正弦值为cos· 6分()假设直线ME与BN共面, 8分则AB平面MBEN,且平面MBEN与平面DCEF交于EN由已知,两正方形不共面,故AB平面DCEF。又AB/CD,所以AB/平面DCEF。面EN为平面MBEN与平面DCEF的交线,所以AB/EN。又AB/CD/EF,所以EN/EF,这与ENEF=E矛盾,故假设不成立。所以ME与BN不共面,它们是异面直线. 12分(19)(本小题满分12分)某人向一目射击4次,每次击中目标的概率为。该目标分为3个不同的部分,第一、二、三部分面积之比为1:3:6。击中目标时,击中任何一部分的概率与其面积成正比。()设X表示目标被击中的次数,求X的分布列;()若目标被击中2次,A表示事件“第一部分至少被击中1次或第二部分被击中2次”,求P(A)w.w.w.k.s.5.u.c.o.m (19)解:()依题意X的分列为 6分()设A1表示事件“第一次击中目标时,击中第i部分”,i=1,2. B1表示事件“第二次击中目标时,击中第i部分”,i=1,2.依题意知P(A1)=P(B1)=0.1,P(A2)=P(B2)=0.3,,所求的概率为 12分(20)(本小题满分12分)已知,椭圆C过点A,两个焦点为(1,0),(1,0)。(1) 求椭圆C的方程;w.w.w.k.s.5.u.c.o.m (2) E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值。(20)解:()由题意,c=1,可设椭圆方程为,解得,(舍去)所以椭圆方程为。 4分()设直线AE方程为:,代入得 设,因为点在椭圆上,所以 8分又直线AF的斜率与AE的斜率互为相反数,在上式中以K代K,可得所以直线EF的斜率即直线EF的斜率为定值,其值为。 12分(21)(本小题满分12分)已知函数f(x)=xax+(a1),。(1)讨论函数的单调性;w.w.w.k.s.5.u.c.o.m (2)证明:若,则对任意x,x,xx,有。(21)解:(1)的定义域为。2分(i)若即,则故在单调增加。(ii)若,而,故,则当时,;当及时,故在单调减少,在单调增加。(iii)若,即,同理可得在单调减少,在单调增加.(II)考虑函数 则由于1<a<5,故,即g(x)在(4, +)单调增加,从而当时有,即,故,当时,有·········12分请考生在第(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题记分。做答时用2B铅笔在答题卡上把所选题目的题号涂黑。(22)(本小题满分10分)选修41:几何证明讲w.w.w.k.s.5.u.c.o.m 已知 ABC 中,AB=AC, D是 ABC外接圆劣弧上的点(不与点A,C重合),延长BD至E。(1) 求证:AD的延长线平分CDE;(2) 若BAC=30,ABC中BC边上的高为2+,求ABC外接圆的面积。w.w.w.k.s.5.u.c.o.m (22)解:()如图,设F为AD延长线上一点A,B,C,D四点共圆,CDF=ABC又AB=AC ABC=ACB,且ADB=ACB, ADB=CDF,对顶角EDF=ADB, 故EDF=CDF,即AD的延长线平分CDE.()设O为外接圆圆心,连接AO交BC于H,则AHBC.连接OC,A由题意OAC=OCA=150, ACB=750,OCH=600.设圆半径为r,则r+r=2+,a得r=2,外接圆的面积为4。(23)(本小题满分10分)选修44 :坐标系与参数方程在直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系,曲线C的极坐标方程为cos()=1,M,N分别为C与x轴,y轴的交点。(1)写出C的直角坐标方程,并求M,N的极坐标;w.w.w.k.s.5.u.c.o.m (2)设MN的中点为P,求直线OP的极坐标方程。(23)解:()由 从而C的直角坐标方程为()M点的直角坐标为(2,0)N点的直角坐标为所以P点的直角坐标为所以直线OP的极坐标方程为(24)(本小题满分10分)选修45:不等式选讲设函数。(1) 若解不等式;(2)如果,求 的取值范围。w.w.w.k.s.5.u.c.o.m (24)解:()当a=1时,f(x)=x1+x+1.由f(x)3得x1+x+1|3()x1时,不等式化为1x1x3 即2x3学而思教育·学习改变命运 思考成就未来! 高考网