欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    与角平分线有关的辅助线(经典-加深).ppt

    • 资源ID:77601179       资源大小:463KB        全文页数:26页
    • 资源格式: PPT        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    与角平分线有关的辅助线(经典-加深).ppt

    与角平分线有关的辅助线与角平分线有关的辅助线(经典经典-加深加深)对应边相等、对应角相等对应边相等、对应角相等全等形全等形角平分线角平分线SSS、SAS、ASA、AAS;HL全等三角形全等三角形性性质质定义定义应用应用判判定定全等三角形知识体系 既然全等三角形的对应边和对应角都相等。那么今后在证明线段(边)和角相等的问题中,全等就将被作为一个基本方法来使用(但请注意不是唯一的方法),学以致用生活中的对称轴对称等腰三角形 等边三角形轴对称图形用坐标表示轴对称利用轴对称变换作图:作轴对称图形 轴对称知识体系线段的垂直平分线如图,ABCDEF,(1)若BAC=70,F=80,则 B=(2)若 AB=6,DF=4,则 EF的长度可取下列各数中的哪个值?()(A)1 (B)2 (C)9 (D)11 (3)若 ABC的面积为24,则 DEF的面积为()若AG是ABC的一条中线,DH是DEF的一条中线,且AG=5,则DH=30 C2470805BACDEF64GH例:已知,例:已知,AC、BD相交于相交于O,BO=DO,CO=AO,过,过O任任作一直线作一直线EF分别交分别交BC、AD于于E、F,求证:,求证:OE=OF。OFEDCBA BO=DO,BOC=DOA(对顶角相等)CO=AO BOC DOA(SAS)B=D(全等三角形的对应角相等)OB=OD,BOE=DOF BOE DOF(ASA)OE=OF(全等三角形的对应边相等)证明证明:在BOE与DOF中 B=D在BOC与DOA中须两次全等。如图,在如图,在ABC中,中,AD平分平分BAC,BD=CD,求证:求证:B=C证明:作DEAB,DF AC,垂足分别为EF AD平分BAC,DEAB,DF AC DEDF,BEDCFD90 在BDE和CDF中 BDCD DEDF BDECDF B=C FE 如图,B C90,E是BC中点,DE平分ADC,求证(1)AE平分DAB,(2)ABCDAD,(3)AEDE。证明:作EF AD垂足为F DE平分ADC EF AD,C90 EFEC E是BC中点 ECEB EFEB EF AD,B90 AE平分 DAB例4.如图,ABCD,,AE平分 DAB,DE平分ADC。求证:ABCDAD,E是BC中点.证明:在DA上截取DFDC,连结EF辅助线做法一:向角的两边作垂线段(利用角平分线性质),自角平分线一点,是一种常见的。归纳:当题目的条件出现于某个角的平分线时,可在这个 角的两边截取相等的线段,利用角的轴对称性构造全等三角形,也是一种常用的辅助线。例3.如图所示,在四边形ABCD中,ABAD,AC平分BAD;B ADC互补 求证:CDBC证明:作CE AD,交AD延长线于E 作CF AB,垂足为F AC平分 BAC,CE AD,CF AB CECF,CEDCFB90 B与 ADC互补 B ADC180 CDEADC180 CDE B 在CED和CFB中 CEDCFB CDE B CECF CED CFB CDBC例5.如图所示,在四边形ABCD中AB AD,AC平分BAD,B与D互补。求证:CDBC。证明:在AB上截取AEAD,连结CE AC平分BAD DAC BAC在ADC和AEC中 ADAE DAC BAC ACAC ADC AEC CDCE,D AEC B与D互补 BD 180 AEC CEB 180 CEB B CECB CDBC例6.如图,点P是ABC的角平分线AD上任一点,且 ABAC。求证:PBPCABAC例7.如图所示,ABCD,E是BC中点,DE平分ADC 求证:AE平分BAD。BCADFE例例8:如图,:如图,ABAC,A90,BD平分平分 ABC,CE BD,交,交BD的延长线为的延长线为E。求证:求证:BD2CE例例9:已知:如图,在:已知:如图,在ABC中,中,AD平分平分BAC,CD AD,D为垂足,为垂足,ABAC。求证:求证:2=1+BABCED213归纳:利用角的轴对称性作角平分线的垂线,构造一对全等 三角形(等腰三角形),又是与角平分线有关的一种 添加辅助线的方法。小结 1.全等三角形和轴对称的基础知识 2.与角平分线有关的辅助线(常见有三种)。:(1)基于角平分线的性质作辅助线。(2)基于以角平分线为对称轴而作的辅助线。(3)基于等腰三角形的“三线合一”性质而作的辅 线。三三.用坐标表示轴对称用坐标表示轴对称小结:小结:在平面直角坐标系中,关于在平面直角坐标系中,关于x轴对称轴对称的点的点横坐标相等横坐标相等,纵坐标互为相反数纵坐标互为相反数.关关于于y轴对称的点轴对称的点横坐标互为相反数横坐标互为相反数,纵坐纵坐标相等标相等.点(点(x,y)关于关于x轴对称的点的坐标为轴对称的点的坐标为_.点(点(x,y)关于关于y轴对称的点轴对称的点的坐标为的坐标为_.(x,y)(x,y)4、轴对称的性质:关于某直线对称的两个图形是全等形。关于某直线对称的两个图形是全等形。如果两个图形关于某条直线对称,那么对称如果两个图形关于某条直线对称,那么对称轴是轴是 任何一对对应点所连线段的垂直平分线。任何一对对应点所连线段的垂直平分线。轴对称图形的对称轴,是任何一对对应点所轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。连线段的垂直平分线。如果两个图形的对应点连线被同条直线垂直如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。平分,那么这两个图形关于这条直线对称。1 1、什么叫线段垂直平分线?、什么叫线段垂直平分线?经过线段中点并且垂直于这条线段的直线,经过线段中点并且垂直于这条线段的直线,叫做这条线段的叫做这条线段的垂直平分线垂直平分线,也叫也叫中垂线。中垂线。2 2、线段垂直平分线有什么性质?、线段垂直平分线有什么性质?线段垂直平分线上的点线段垂直平分线上的点与这条线段的与这条线段的两个端点的距离相等两个端点的距离相等 (纯粹性)。你能画图说明吗?线段的垂直平分线线段的垂直平分线3.逆定理:与一条线段两个端点距离相等的点,在线段的垂直平分线上。(完备性)利用轴对称变换作图:如图:要在燃气管道L上修建一个泵站,分别向A、B两镇供气,泵站修在管道什么地方,可使所用的输气管道线最短?ABLP等边三角形等边三角形1.1.等边三角形的等边三角形的性质:性质:等边三角形的三个角都相等,并且每一个角都等边三角形的三个角都相等,并且每一个角都等于等于60600 0 。2 2、等边三角形的判定:、等边三角形的判定:三个角都相等的三角形是等边三角形。三个角都相等的三角形是等边三角形。有一个角是有一个角是60600 0的等腰三角形是等边三角形。的等腰三角形是等边三角形。3.3.在直角三角形中,如果一个锐角等于在直角三角形中,如果一个锐角等于30300 0,那么它那么它所对的直角边等于斜边的一半。所对的直角边等于斜边的一半。结束结束

    注意事项

    本文(与角平分线有关的辅助线(经典-加深).ppt)为本站会员(豆****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开