工程测量6讲解学习.ppt
工程测量66.1 6.1 测量误差概述测量误差概述 测量误差及其来源测量误差及其来源 测量误差的来源测量误差的来源(1 1)仪器误差:仪器误差:仪器精度的局限、轴系残余误差等。仪器精度的局限、轴系残余误差等。(2 2)人为误差:人为误差:判断力和分辨率的限制、经验等。判断力和分辨率的限制、经验等。(3 3)外界条件的影响:外界条件的影响:温度变化、风、大气折光等温度变化、风、大气折光等 测量误差的表现形式测量误差的表现形式 测量误差(真误差测量误差(真误差=观测值-真值)(观测值与真值之差)(观测值与观测值之差)11/10/2022 2 烟台大学土木工程学院例:例:误差误差 处理方法处理方法 钢尺尺长误差钢尺尺长误差 l ld d 计算改正计算改正 钢尺温度误差钢尺温度误差 l lt t 计算改正计算改正 水准仪视准轴误差水准仪视准轴误差I I 操作时抵消操作时抵消(前后视等距前后视等距)经纬仪视准轴误差经纬仪视准轴误差C C 操作时抵消操作时抵消(盘左盘右取平均盘左盘右取平均)2.2.系统误差系统误差 误差出现的大小、符号相同,或按误差出现的大小、符号相同,或按 规律性变化,具有规律性变化,具有积累性积累性。系统误差可以消除或减弱系统误差可以消除或减弱。(计算改正、观测方法、仪器检校计算改正、观测方法、仪器检校)测量误差分为:测量误差分为:粗差粗差、系统误差系统误差和和偶然误差偶然误差6.2 6.2 测量误差的种类测量误差的种类1.1.粗差粗差(错误错误)超限的误差超限的误差11/10/2022 3 烟台大学土木工程学院3.3.偶然误差偶然误差误差出现的大小、符号各不相同,误差出现的大小、符号各不相同,表面看无规律性。表面看无规律性。例:估读数、气泡居中判断、瞄准、对中等误差,例:估读数、气泡居中判断、瞄准、对中等误差,导致观测值产生误差导致观测值产生误差 。准确度(测量成果与真值的差异)最或是值(最接近真值的估值,最可靠值)测量平差(求解最或是值并评定精度)4.4.几个概念几个概念:精(密)度(观测值之间的离散程度)11/10/2022 4 烟台大学土木工程学院举例举例:在某测区,等精度观测了在某测区,等精度观测了358358个三角形的内个三角形的内 角之和,得到角之和,得到358358个三角形闭合差个三角形闭合差 i i(偶然误偶然误 差,也即真误差差,也即真误差),然后对三角形闭合差,然后对三角形闭合差 i i 进行分析。进行分析。分析结果表明,分析结果表明,当观测次数很多时,偶然当观测次数很多时,偶然 误差的出现,呈现出统计学上的规律性。误差的出现,呈现出统计学上的规律性。而而 且,观测次数越多,规律性越明显。且,观测次数越多,规律性越明显。6.3 6.3 偶然误差的特性偶然误差的特性11/10/2022 5 烟台大学土木工程学院11/10/2022 6 烟台大学土木工程学院用用频率直方图频率直方图表示的偶然误差统计:表示的偶然误差统计:频率直方图的中间高、两边低,并向横轴逐渐逼近,频率直方图的中间高、两边低,并向横轴逐渐逼近,对称于对称于y轴。轴。频率直方图中,每一条形的面积表示误差出现在该区频率直方图中,每一条形的面积表示误差出现在该区 间的频率间的频率k/n,而所有条形的,而所有条形的总面积等于总面积等于1。各条形顶边中点各条形顶边中点连线经光滑后的曲连线经光滑后的曲线形状,表现出偶线形状,表现出偶然误差的普遍规律然误差的普遍规律 图6-1 误差统计直方图11/10/2022 7 烟台大学土木工程学院从误差统计表和频率直方图中,可以归纳出偶然误从误差统计表和频率直方图中,可以归纳出偶然误 差的差的四个特性四个特性:特性(1)、(2)、(3)决定了特性(4),特性特性(4)具有实用意义。具有实用意义。3.3.偶然误差的特性偶然误差的特性(1)(1)在一定的观测条件下,偶然误差的绝对值不会超过一定在一定的观测条件下,偶然误差的绝对值不会超过一定 的限值的限值(有界性有界性);(2)(2)绝对值小的误差比绝对值大的误差出现的机会多绝对值小的误差比绝对值大的误差出现的机会多(趋向性趋向性);(3)(3)绝对值相等的正误差和负误差出现的机会相等绝对值相等的正误差和负误差出现的机会相等(对称性对称性);(4)(4)当观测次数无限增加时,偶然误差的算术平均值趋近于零当观测次数无限增加时,偶然误差的算术平均值趋近于零 (抵偿性抵偿性):11/10/2022 8 烟台大学土木工程学院偶然误差具有正态分布的特性偶然误差具有正态分布的特性当观测次数当观测次数n n无限增多无限增多(n(n)、误差区间误差区间d d 无限缩小无限缩小(d d 0)0)时,各矩形的顶边就连成一条光滑的曲线,时,各矩形的顶边就连成一条光滑的曲线,这条曲线称为这条曲线称为“正态分布曲正态分布曲线线”,又称为,又称为“高斯误差分高斯误差分布曲线布曲线”。所以偶然误差所以偶然误差具有具有正态分布正态分布的特性。的特性。图6-1 误差统计直方图11/10/2022 9 烟台大学土木工程学院1.1.方差与标准差方差与标准差 由正态分布密度函数式中 、为常数;=2.72828x=y正态分布曲线(a=0)令:令:,上式为:6.4 6.4 衡量精度的指标衡量精度的指标11/10/2022 10 烟台大学土木工程学院标准差 的数学意义 表示表示 的的离散程度离散程度x=y较小较大称为标准差标准差:上式中,称为方差方差:11/10/2022 11 烟台大学土木工程学院测量工作中,用中误差中误差作为衡量观测值精度的标准。中误差中误差:观测次数无限多时,用标准差观测次数无限多时,用标准差 表示偶然误差的离散情形:表示偶然误差的离散情形:上式中,偶然误差上式中,偶然误差 为观测值为观测值 与真值与真值X之差:之差:观测次数观测次数n n有限有限时,用时,用中误差中误差m表示偶然误差的离散情形:表示偶然误差的离散情形:i=i-X11/10/2022 12 烟台大学土木工程学院P123表5-211/10/2022 13 烟台大学土木工程学院 m m1 1小于小于m m2 2,说明第一组观测值的误差分布比较说明第一组观测值的误差分布比较集中集中,其其精度较高精度较高;相对地,第二组观测值的误差分布比;相对地,第二组观测值的误差分布比 较较离散,离散,其其精度较低:精度较低:m1=2.7是第一组观测值的中误差;m2=3.6是第二组观测值的中误差。11/10/2022 14 烟台大学土木工程学院2.2.容许误差容许误差(极限误差)根据误差分布的密度函数,误差出现在微分区间d内的概率为:误差出现在K倍中误差区间内的概率为:将K=1、2、3分别代入上式,可得到偶然误差分别出现在一倍、二倍、三倍中误差区间内的概率:P(|m)=0.683=68.3 P(|2m)=0.954=95.4 P(|3m)=0.997=99.7 测量中,一般取两倍中误差(2m)作为容许误差,也称为限差:|容|=3|m|或|容|=2|m|11/10/2022 15 烟台大学土木工程学院 3.3.相对误差相对误差(相对中误差)误差绝对值与观测量之比。用于表示距离距离的精度。用分子为1的分数表示。分数值较小相对精度较高;分数值较大相对精度较低。K2K1,所以距离,所以距离S2精度较高。精度较高。例例2 2:用钢尺丈量两段距离分别得用钢尺丈量两段距离分别得S S1 1=100=100米米,m,m1 1=0.02m=0.02m;S S2 2=200=200米米,m,m2 2=0.02m=0.02m。计算。计算S S1 1、S S2 2的相对误差。的相对误差。0.02 1 0.02 1 K1=;K2=100 5000 200 10000解:解:11/10/2022 16 烟台大学土木工程学院一一.一般函数的中误差一般函数的中误差令 的系数为 ,(c)式为:由于 和 是一个很小的量,可代替代替上式中的 和 :(c)代入(b)得对(a)全微分:(b)设有函数:为独立独立观测值设 有真误差 ,函数 也产生真误差(a)6.5 6.5 误差传播定律误差传播定律11/10/2022 17 烟台大学土木工程学院对Z观测了k次,有k个式(d)对(d)式中的一个式子取平方:(i,j=1n且ij)(e)对K个(e)式取总和:(f)11/10/2022 18 烟台大学土木工程学院(f)(f)式两边除以K,得(g)式:(g)由偶然误差的抵偿性知:(g)式最后一项极小于前面各项,可忽略不计,则:则:前面各项即即(h)11/10/2022 19 烟台大学土木工程学院(h)考虑考虑 ,代入上式,得中误差关系式:,代入上式,得中误差关系式:(6-10)上式为上式为一般函数的中误差公式一般函数的中误差公式,也称为,也称为误差传播定律误差传播定律。11/10/2022 20 烟台大学土木工程学院 通过以上误差传播定律的推导,我们通过以上误差传播定律的推导,我们可以总结出可以总结出求观测值函数中误差的步骤求观测值函数中误差的步骤:1.列出函数式;列出函数式;2.对函数式求全微分;对函数式求全微分;3.套用误差传播定律,写出中误差式。套用误差传播定律,写出中误差式。11/10/2022 21 烟台大学土木工程学院 1.倍数函数的中误差 设有函数式 (x为观测值,K为x的系数)全微分 得中误差式例:例:量得 地形图上两点间长度 =168.5mm0.2mm,计算该两点实地距离S及其中误差ms:解:解:列函数式 求全微分 中误差式二二.几种常用函数的中误差几种常用函数的中误差 11/10/2022 22 烟台大学土木工程学院2.线性函数的中误差线性函数的中误差 设有函数式 全微分 中误差式例:例:设有某线性函数设有某线性函数 其中其中 、分别为独立观测值,它们的中误差分分别为独立观测值,它们的中误差分 别为别为 求Z的中误差 。解:解:对上式全微分:由中误差式得:11/10/2022 23 烟台大学土木工程学院 函数式 全微分 中误差式 3.算术平均值的中误差式算术平均值的中误差式 由于等精度观测时,代入上式:得 由此可知,算术平均值的中误差比观测值的中误差缩小了缩小了 倍。对某观测量进行多次观测(多余观测)取平均,是提高观测成果精度最有效的方法。11/10/2022 24 烟台大学土木工程学院4.和或差函数的中误差和或差函数的中误差 函数式:全微分:中误差式:当等精度观测时:上式可写成:例:例:测定A、B间的高差 ,共连续测了9站。设测量 每站高差的中误差 ,求总高差 的中 误差 。解:解:11/10/2022 25 烟台大学土木工程学院观测值函数中误差公式汇总 观测值函数中误差公式汇总观测值函数中误差公式汇总 函数式 函数的中误差一般函数倍数函数 和差函数 线性函数 算术平均值 11/10/2022 26 烟台大学土木工程学院误差传播定律的应用误差传播定律的应用 用DJ6经纬仪观测三角形内角时,每个内角观测4个测回取平均,可使得三角形闭合差 m m1515 。例例1:要求三角形最大闭合差m15,问用DJ6经纬仪观测三角形每个内角时须用几个测回?=(1+2+3)-180解:解:由题意:2m=15,则 m=7.5每个角的测角中误差:由于DJ6一测回角度中误差为:由角度测量n测回取平均值的中误差公式:11/10/2022 27 烟台大学土木工程学院误差传播定律的应用误差传播定律的应用例2:试用中误差传播定律分析视距测量的精度。解:(1)测量水平距离的精度 基本公式:求全微分:水平距离中误差:其中:11/10/2022 28 烟台大学土木工程学院误差传播定律的应用误差传播定律的应用例2:试用中误差传播定律分析视距测量的精度。解:(2)测量高差的精度 基本公式:求全微分:高差中误差:其中:11/10/2022 29 烟台大学土木工程学院误差传播定律的应用误差传播定律的应用例3:(1)用钢尺丈量某正方形一条边长为 求该正方形的周长S和面积A的中误差.解:(1)周长 ,(2)用钢尺丈量某正方形四条边的边长为其中:求该正方形的周长S和面积A的中误差.面积 ,周长的中误差为 全微分:面积的中误差为 全微分:11/10/2022 30 烟台大学土木工程学院解:(1)周长和面积的中误差分别为 例3:(2)用钢尺丈量某正方形四条边的边长为其中:求该正方形的周长S和面积A的中误差.(2)周长 ;周长的中误差为 面积 得周长的中误差为 全微分:但由于11/10/2022 31 烟台大学土木工程学院 观测值的算术平均值观测值的算术平均值(最或是值)用观测值的改正数用观测值的改正数v v计算观测值的计算观测值的 中误差中误差 (即:白塞尔公式)6.6 6.6 同(等)精度直接观测平差同(等)精度直接观测平差11/10/2022 32 烟台大学土木工程学院 一一.观测值的观测值的算术平均值算术平均值(最或是值、最可靠值)证明算术平均值为该量的最或是值:设该量的真值为X,则各观测值的真误差为 1=1-X 2=2-X n=n-X对某未知量未知量进行了n 次观测,得n个观测值1,2,n,则该量的算术平均值为:x=1+2+nnn上式等号两边分别相加得和:L=11/10/2022 33 烟台大学土木工程学院当观测无限多次时:得两边除以n:由当观测次数无限多时,观测值的算术平均值就是该 量的真值;当观测次数有限时,观测值的算术平均 值最接近真值。所以,算术平均值是最或是值。L X11/10/2022 34 烟台大学土木工程学院观测值改正数特点二二.观测值的改正数观测值的改正数v v :以算术平均值为最或是值,并据此计算各观测值的改正数 v,符合vv=min 的“最小二乘原则”。Vi=L-i(i=1,2,n)特点特点1 改正数总和为零:改正数总和为零:对上式取和:以 代入:通常用于计算检核L=nv=nL-nv=n -=0v=0特点特点2 vv符合符合“最小二乘原则最小二乘原则”:则即vv=(x-)2=min=2(x-)=0dvv dx(x-)=0nx-=0 x=n11/10/2022 35 烟台大学土木工程学院精度评定 比较前面的公式,可以证明,两式根号内的部分是相等的,即在 与 中:精度评定精度评定用观测值的改正数v计算中误差一.计算公式(即白塞尔公式):11/10/2022 36 烟台大学土木工程学院证明如下:证明如下:真误差:真误差:改正数:改正数:证明两式根号内相等对上式取n项的平方和由上两式得其中:11/10/2022 37 烟台大学土木工程学院证明两式根号内相等中误差定义:白塞尔公式:11/10/2022 38 烟台大学土木工程学院解:解:该水平角该水平角真值未知真值未知,可用,可用算术平均值的改正数算术平均值的改正数V V计计 算其中误差:算其中误差:例:例:对某水平角等精度观测了5次,观测数据如下表,求其算术平均值及观测值的中误差。算例1:次数观测值VV V备注1764249-4162764240+5253764242+394764246-115764248-39平均764245 V=0VV=60 7642451.74 11/10/2022 39 烟台大学土木工程学院距离丈量精度计算例算例算例2:对某距离用精密量距方法丈量六次,求对某距离用精密量距方法丈量六次,求该距离的算术该距离的算术 平均值平均值 ;观测值的中误差观测值的中误差 ;算术平均值的中误算术平均值的中误 差差 ;算术平均值的相对中误差算术平均值的相对中误差 :凡是相对中误差,都必须用分子为1的分数表示。11/10/2022 40 烟台大学土木工程学院6.7 6.7 不同精度直接观测平差不同精度直接观测平差一、权的概念 权是权衡利弊、权衡轻重的意思。在测量工作中权是一个表示观测结果可靠程度的相对性指标。1 权的定义:设一组不同精度的观测值为l i,其中误差为mi(I=1,2n),选定任一大于零的常数,则定义权为:称Pi为观测值l i 的权。11/10/2022 41 烟台大学土木工程学院1 权的定义:对于一组已知中误差mi的观测值而言,选定一个大于零的常数值,就有一组对应的权;由此可得各观测值权之间的比例关系:2 权的性质(1 1)权表示观测值的相对精度;()权表示观测值的相对精度;(2 2)权与中误差)权与中误差的平方成反比,权始终大于零,权大则精度高;的平方成反比,权始终大于零,权大则精度高;(3 3)权的大小由选定的)权的大小由选定的值确定,但测值权之间值确定,但测值权之间权的比例关系不变,同一问题仅能选定一个权的比例关系不变,同一问题仅能选定一个值。值。11/10/2022 42 烟台大学土木工程学院二、测量中常用的定权方法1 同精度观测值的权对于一组同精度观测值l i,一次观测的中误差为m,由权的定义,选定=m2,则一次观测值的权为:n次同精度观测值的算术平均值的中误差为:同精度观测值算术平均值的权为:11/10/2022 43 烟台大学土木工程学院二、测量中常用的定权方法2 单位权与单位权中误差对于一组不同精度的观测值l i,一次观测的中误差为mi,设某次观测的中误差为m,其权为P0,选定=m2,则有:数值等于1的权,称为单位权;权等于1的中误差称为单位权中误差,常用表示。对于中误差为mi的观测值,其权为:相应中误差的另一表示方法为:11/10/2022 44 烟台大学土木工程学院二、测量中常用的定权方法3 水准测量的权与测站数成反比,或者与路线长度成反比。4 角度测量的权与测回数成正比。5 距离测量的权与长度成反比11/10/2022 45 烟台大学土木工程学院此课件下载可自行编辑修改,仅供参考!此课件下载可自行编辑修改,仅供参考!感谢您的支持,我们努力做得更好!谢谢感谢您的支持,我们努力做得更好!谢谢