用样本的数字特征估计总体的数字特征第一课时.ppt
-
资源ID:77647825
资源大小:838KB
全文页数:30页
- 资源格式: PPT
下载积分:20金币
快捷下载

会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
用样本的数字特征估计总体的数字特征第一课时.ppt
用样本的数字特征估计总体的数字特征第一课时 Still waters run deep.流静水深流静水深,人静心深人静心深 Where there is life,there is hope。有生命必有希望。有生命必有希望一、众数、中位数、平均数一、众数、中位数、平均数1、众数众数 在一组数据中,出现次数最多的数在一组数据中,出现次数最多的数据叫做这一组数据的众数。据叫做这一组数据的众数。2、中位数中位数 将一组数据按大小依次排列,将一组数据按大小依次排列,把处在最中间位置的一个数据(或两个数据把处在最中间位置的一个数据(或两个数据的平均数)叫做这组数据的中位数。的平均数)叫做这组数据的中位数。3、平均数平均数 (1)x=1/n(x1+x2+xn)练习练习:在一次中学生田径运动会上,在一次中学生田径运动会上,参加男子跳高的参加男子跳高的17名运动员的成绩如下名运动员的成绩如下表所示:表所示:成成绩绩(单单位:米位:米)1.50 1.60 1.651.701.751.801.851.90人数人数23234111分别求这些运动员成绩的众数,中位数与分别求这些运动员成绩的众数,中位数与平均数平均数 解:在解:在17个数据中,个数据中,1.75出现了出现了4次,出现的次,出现的次数最多,即这组数据的众数是次数最多,即这组数据的众数是1.75上面表里的上面表里的17个数据可看成是按从小到大的个数据可看成是按从小到大的顺序排列的,其中第顺序排列的,其中第9个数据个数据1.70是最中间的一是最中间的一个数据,即这组数据的中位数是个数据,即这组数据的中位数是1.70;这组数据的平均数是这组数据的平均数是答:答:17名运动员成绩的众数、中位数、平均数名运动员成绩的众数、中位数、平均数依次是依次是1.75(米)、(米)、1.70(米)、(米)、1.69(米)(米).二二、众数、中位数、平均数众数、中位数、平均数与频率分布直方图的关系与频率分布直方图的关系 1、众数在样本数据的频率分布直方图众数在样本数据的频率分布直方图中,就是最高矩形的中点的横坐标。中,就是最高矩形的中点的横坐标。例如,在上一节调查的例如,在上一节调查的100位居民的月位居民的月均用水量的问题中,从这些样本数据的频率均用水量的问题中,从这些样本数据的频率分布直方图可以看出,月均用水量的众数是分布直方图可以看出,月均用水量的众数是2.25t.如图所示:如图所示:频率分布直方图如下频率分布直方图如下:月均用水量月均用水量/t频率频率组距组距0.100.200.300.400.500.511.5 22.533.544.5 2、在样本中,有在样本中,有50的个体小于或等于中位数,也有的个体小于或等于中位数,也有50的的个体大于或等于中位数个体大于或等于中位数,因此,因此,在频率分布直方图中,中位数左在频率分布直方图中,中位数左边和右边的直方图的面积应该相等边和右边的直方图的面积应该相等,由此可以估计中位数的值。,由此可以估计中位数的值。下图中虚线代表居民月均用水量的中位数的估计值,此数据值为下图中虚线代表居民月均用水量的中位数的估计值,此数据值为2.02t.月均用水量月均用水量/t频率频率组距组距0.100.200.300.400.500.511.5 22.533.544.5说明说明:2.03这个中位数的估计值这个中位数的估计值,与样本与样本的中位数值的中位数值2.0不一样不一样,这是因为样本数这是因为样本数据的频率分布直方图据的频率分布直方图,只是直观地表明只是直观地表明分布的形状分布的形状,但是从直方图本身得不出但是从直方图本身得不出原始的数据内容原始的数据内容,所以由频率分布直方所以由频率分布直方图得到的中位数估计值往往与样本的图得到的中位数估计值往往与样本的实际中位数值不一致实际中位数值不一致.3.可以从频率分布直方图中估计平均数可以从频率分布直方图中估计平均数 平均数是频率分布直方图中每个小矩形的面积乘以小矩形底边平均数是频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和中点的横坐标之和月均用水量月均用水量/t频率频率组距组距0.100.200.300.400.500.511.5 22.533.544.50.250.04+0.750.08+1.250.15+1.750.250.04+0.750.08+1.250.15+1.750.22+2.250.25+2.750.14+3.25 0.22+2.250.25+2.750.14+3.25 0.06+3.750.04+4.250.02=2.020.06+3.750.04+4.250.02=2.02(t t).平均数是平均数是2.02.2.02.平均数与中位数相等,是必然还是巧合?平均数与中位数相等,是必然还是巧合?0.250.25,0.750.75,1.251.25,1.751.75,2.252.25,2.752.75,3.253.25,3.753.75,4.25.4.25.频率分布直方图如下频率分布直方图如下:月均用水量月均用水量/t频率频率组距组距0.100.200.300.400.500.511.5 22.533.544.5三三 三种数字特征的优缺点三种数字特征的优缺点 1、众数体现了样本数据的最大集中、众数体现了样本数据的最大集中点,但它对其它数据信息的忽视使得无点,但它对其它数据信息的忽视使得无法客观地反映总体特征法客观地反映总体特征.如上例中众数是如上例中众数是2.25t,它告诉我们它告诉我们,月均用水量为月均用水量为2.25t的的居民数比月均用水量为其它数值的居民居民数比月均用水量为其它数值的居民数多数多,但它并没有告诉我们多多少但它并没有告诉我们多多少.2、中位数是样本数据所占频率、中位数是样本数据所占频率的等分线,它不受少数几个极端值的的等分线,它不受少数几个极端值的影响,这在某些情况下是优点,但它影响,这在某些情况下是优点,但它对极端值的不敏感有时也会成为缺点。对极端值的不敏感有时也会成为缺点。如上例中假设有某一用户月均用水量如上例中假设有某一用户月均用水量为为10t,那么它所占频率为,那么它所占频率为0.01,几乎几乎不影响中位数不影响中位数,但显然这一极端值是不但显然这一极端值是不能忽视的。能忽视的。3、由于平均数与每一个样本的、由于平均数与每一个样本的数据有关,所以任何一个样本数据的数据有关,所以任何一个样本数据的改变都会引起平均数的改变,这是众改变都会引起平均数的改变,这是众数、中位数都不具有的性质。也正因数、中位数都不具有的性质。也正因如此如此,与众数、中位数比较起来,平,与众数、中位数比较起来,平均数可以反映出更多的关于样本数据均数可以反映出更多的关于样本数据全体的信息,但平均数受数据中的极全体的信息,但平均数受数据中的极端值的影响较大,使平均数在估计时端值的影响较大,使平均数在估计时可靠性降低。可靠性降低。样本的众数、中位数和平均数常用来表示样本样本的众数、中位数和平均数常用来表示样本数据的数据的“中心值中心值”,其中众数和中位数容易计算,其中众数和中位数容易计算,不受少数几个极端值的影响,但只能表达样本数据不受少数几个极端值的影响,但只能表达样本数据中的少量信息中的少量信息.平均数代表了数据更多的信息,但平均数代表了数据更多的信息,但受样本中每个数据的影响,越极端的数据对平均数受样本中每个数据的影响,越极端的数据对平均数的影响也越大的影响也越大.当样本数据质量比较差时,使用众当样本数据质量比较差时,使用众数、中位数或平均数描述数据的中心位置,可能与数、中位数或平均数描述数据的中心位置,可能与实际情况产生较大的误差,难以反映样本数据的实实际情况产生较大的误差,难以反映样本数据的实际状况,因此,我们需要一个统计数字刻画样本数际状况,因此,我们需要一个统计数字刻画样本数据的离散程度据的离散程度.思考思考1 1:在一次射击选拔赛中,甲、乙:在一次射击选拔赛中,甲、乙两名运动员各射击两名运动员各射击1010次,每次命中的环次,每次命中的环数如下:数如下:甲:甲:7 8 7 9 5 4 9 10 7 47 8 7 9 5 4 9 10 7 4乙:乙:9 5 7 8 7 6 8 6 7 79 5 7 8 7 6 8 6 7 7 甲、乙两人本次射击的平均成绩分甲、乙两人本次射击的平均成绩分别为多少环?别为多少环?甲、乙两人射击的平均成绩相等,观察两人甲、乙两人射击的平均成绩相等,观察两人成绩的频率分布条形图,你能说明其水平差成绩的频率分布条形图,你能说明其水平差异在那里吗?异在那里吗?环数环数频率频率0.40.40.30.30.20.20.10.14 5 6 7 8 9 10 4 5 6 7 8 9 10 O O(甲)(甲)环数环数频率频率0.40.40.30.30.20.20.10.14 5 6 7 8 9 10 4 5 6 7 8 9 10 O O(乙)(乙)甲的成绩比较分散,极差较大,乙的甲的成绩比较分散,极差较大,乙的成绩相对集中,比较稳定成绩相对集中,比较稳定.对于样本数据对于样本数据x x1 1,x x2 2,x xn n,设想通过,设想通过各数据到其平均数的平均距离来反映样各数据到其平均数的平均距离来反映样本数据的分散程度,那么这个平均距离本数据的分散程度,那么这个平均距离如何计算?如何计算?反映样本数据的分散程度的大小,最常用的反映样本数据的分散程度的大小,最常用的统计量是标准差,一般用统计量是标准差,一般用s s表示表示.假设样本数假设样本数据据x x1 1,x x2 2,x xn n的平均数为,则标准差的计的平均数为,则标准差的计算公式是:算公式是:那么标准差的取值范围是什么?标准差为那么标准差的取值范围是什么?标准差为0 0的样本数据有何特点?的样本数据有何特点?s0s0,标准差为,标准差为0 0的样本数据都相等的样本数据都相等.思考思考5 5:对于一个容量为:对于一个容量为2 2的样本:的样本:x x1 1,x x2 2(x(x1 1x x2 2),则,则 ,在数轴上,这两个统计数据有什么几何意义在数轴上,这两个统计数据有什么几何意义?由此说明标准差的大小对数据的离散程度?由此说明标准差的大小对数据的离散程度有何影响?有何影响?标准差越大离散程度越大,数据较分散;标准差越大离散程度越大,数据较分散;标准差越小离散程度越小,数据较集中标准差越小离散程度越小,数据较集中在平均数周围在平均数周围.s s甲甲=2=2,s s乙乙=1.095.=1.095.计算甲、乙两名运动员的射击成绩的计算甲、乙两名运动员的射击成绩的标准差,比较其射击水平的稳定性标准差,比较其射击水平的稳定性.甲:甲:7 8 7 9 5 4 9 10 7 47 8 7 9 5 4 9 10 7 4乙:乙:9 5 7 8 7 6 8 6 7 79 5 7 8 7 6 8 6 7 7例题分析例题分析例例1 1 画出下列四组样本数据的条形图,画出下列四组样本数据的条形图,说明他们的异同点说明他们的异同点.(1)(1),;,;(2)(2),;,;O O频率频率1.00.80.60.40.21 2 3 4 5 6 7 81 2 3 4 5 6 7 8 (1)O O频率频率1.00.80.60.40.21 2 3 4 5 6 7 81 2 3 4 5 6 7 8 (2)(3)(3),;,;(4)(4),.频率频率1.01.00.80.80.60.60.40.40.20.21 2 3 4 5 6 7 81 2 3 4 5 6 7 8 O O(3 3)频率频率1.01.00.80.80.60.60.40.40.20.21 2 3 4 5 6 7 81 2 3 4 5 6 7 8 O O(4 4)例例2 2 甲、乙两人同时生产内径为甲、乙两人同时生产内径为25.40mm25.40mm的一种零的一种零件,为了对两人的生产质量进行评比,从他们生件,为了对两人的生产质量进行评比,从他们生产的零件中各随机抽取产的零件中各随机抽取2020件,量得其内径尺寸如件,量得其内径尺寸如下(单位:下(单位:mmmm):):甲甲 :25.46 25.32 25.45 25.39 25.36 25.34 25.42 25.46 25.32 25.45 25.39 25.36 25.34 25.42 25.45 25.38 25.42 25.39 25.43 25.39 25.40 25.45 25.38 25.42 25.39 25.43 25.39 25.40 25.44 25.40 25.42 25.35 25.41 25.3925.44 25.40 25.42 25.35 25.41 25.39乙:乙:25.40 25.43 25.44 25.48 25.48 25.47 25.49 25.40 25.43 25.44 25.48 25.48 25.47 25.49 25.49 26.36 25.34 25.33 25.43 25.43 25.32 25.49 26.36 25.34 25.33 25.43 25.43 25.32 25.47 25.31 25.32 25.32 25.32 25.4825.47 25.31 25.32 25.32 25.32 25.48 从生产零件内径的尺寸看,谁生产的零件质量较从生产零件内径的尺寸看,谁生产的零件质量较高?高?甲生产的零件内径更接近内径标准,且稳定甲生产的零件内径更接近内径标准,且稳定程度较高,故甲生产的零件质量较高程度较高,故甲生产的零件质量较高.说明:说明:1.1.生产质量可以从总体的平均数与标准差生产质量可以从总体的平均数与标准差两个角度来衡量,但甲、乙两个总体的平均数与两个角度来衡量,但甲、乙两个总体的平均数与标准差都是不知道的,我们就用样本的平均数与标准差都是不知道的,我们就用样本的平均数与标准差估计总体的平均数与标准差标准差估计总体的平均数与标准差.2.2.问题中问题中25.40mm25.40mm是内径的标准值,而不是总体的是内径的标准值,而不是总体的平均数平均数.