《圆的参数方程》(优质课)说课讲解.ppt
圆的参数方程圆的参数方程(优质优质课课)(1)在在取取定定的的坐坐标标系系中中,如如果果曲曲线线上上任任意意一一点点的的坐坐标标x、y都是某个变数都是某个变数t的函数,即的函数,即并并且且对对于于t的的每每一一个个允允许许值值,由由上上述述方方程程组组所所确确定定的的点点M(x,y)都都在在这这条条曲曲线线上上,那那么么上上述述方方程程组组就就叫叫做做这这条条曲曲线线的的参参数数方方程程,联联系系x、y之之间间关关系系的的变变数数叫叫做做参参变变数数,简简称称参参数数。参参数数方方程程的的参参数数可可以以是是有有物物理理、几几何何意意义义的的变变数数,也也可可以以是是没没有有明明显显意意义义的的变数。变数。(2)相相对对于于参参数数方方程程来来说说,前前面面学学过过的的直直接接给给出出曲线上点的坐标关系的方程,叫做曲线的曲线上点的坐标关系的方程,叫做曲线的普通方程普通方程。并且对于并且对于 的每一个允许值的每一个允许值,由方程组由方程组所所确定的点确定的点P(x,y),都在圆都在圆O上上.5o思考思考1:圆心为原点,半径为圆心为原点,半径为r 的圆的参数方程是什么呢?的圆的参数方程是什么呢?我们把方程组我们把方程组叫做圆心在原点、半径为叫做圆心在原点、半径为r的圆的参数方程,的圆的参数方程,是参数是参数.例例1 1、已知圆方程已知圆方程x x2 2+y+y2 2+2x-6y+9=0+2x-6y+9=0,将它,将它化为参数方程。化为参数方程。解:解:x x2 2+y+y2 2+2x-6y+9=0+2x-6y+9=0化为标准方程,化为标准方程,(x+1x+1)2 2+(y-3y-3)2 2=1=1,参数方程为参数方程为(为参数为参数)练习:练习:1.填空:已知圆填空:已知圆O的参数方程是的参数方程是(0 2 )如果圆上点P所对应的参数 ,则点P的坐标是 A的圆,化为标准方程为(2,-2)1例3例例2.如图如图,已知点已知点P是圆是圆x2+y2=16上的一个动点上的一个动点,点点A是是x轴上的定点轴上的定点,坐标为坐标为(12,0).当点当点P在圆在圆 上运动时上运动时,线段线段PA中点中点M的轨迹是什么的轨迹是什么?xMPAyO解解:设设M的坐标为的坐标为(x,y),可设点可设点P坐标为坐标为(4cos,4sin)点点M的轨迹是以的轨迹是以(6,0)为圆心、为圆心、2为半径的圆。为半径的圆。由中点公式得由中点公式得:点点M的轨迹方程为的轨迹方程为x=6+2cosy=2sinx=4cosy=4sin 圆圆x2+y2=16的参数方程为的参数方程为例例2.如图如图,已知点已知点P是圆是圆x2+y2=16上的一个动点上的一个动点,点点A是是x轴上的定点轴上的定点,坐标为坐标为(12,0).当点当点P在圆在圆 上运动时上运动时,线段线段PA中点中点M的轨迹是什么的轨迹是什么?解解:设设M的坐标为的坐标为(x,y),点点M的轨迹是以的轨迹是以(6,0)为圆心、为圆心、2为半径的圆。为半径的圆。由中点坐标公式得由中点坐标公式得:点点P的坐标为的坐标为(2x-12,2y)(2x-12)2+(2y)2=16即即 M的轨迹方程为的轨迹方程为(x-6)2+y2=4点点P在圆在圆x2+y2=16上上xMPAyO例例2.如图如图,已知点已知点P是圆是圆x2+y2=16上的一个动点上的一个动点,点点A是是x轴上的定点轴上的定点,坐标为坐标为(12,0).当点当点P在圆在圆 上运动时上运动时,线段线段PA中点中点M的轨迹是什么的轨迹是什么?例例3、已知点已知点P(x,y)是圆)是圆x2+y2-6x-4y+12=0上动上动点,求(点,求(1)x2+y2 的最值,的最值,(2)x+y的最值,的最值,(3)P到直线到直线x+y-1=0的距离的距离d的最值。的最值。解:圆解:圆x2+y2-6x-4y+12=0即(即(x-3)2+(y-2)2=1,用参数方程表示为用参数方程表示为由于点由于点P在圆上,所以可设在圆上,所以可设P(3+cos,2+sin),),(1)x2+y2=(3+cos)2+(2+sin)2=14+4 sin+6cos=14+2 sin(+).(其中其中tan =3/2)x2+y2 的最大值为的最大值为14+2 ,最小值为,最小值为14-2 。(2)x+y=3+cos+2+sin=5+sin(+)x+y的最大值为的最大值为5+,最小值为,最小值为5-。(3)显然当显然当sin(+)=1时,时,d取最大值,最取最大值,最小值,分别为小值,分别为 ,。小小 结结:1、圆的参数方程、圆的参数方程2、参数方程与普通方程的概念、参数方程与普通方程的概念3、圆的参数方程与普通方程的互化、圆的参数方程与普通方程的互化4、求轨迹方程的三种方法:、求轨迹方程的三种方法:相关点问题相关点问题(代入法);(代入法);参数法;参数法;定义法定义法5、求最值、求最值结束结束