欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    《函数的导数与微分》PPT课件.ppt

    • 资源ID:77678443       资源大小:111KB        全文页数:23页
    • 资源格式: PPT        下载积分:11.9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要11.9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    《函数的导数与微分》PPT课件.ppt

    第二章 一元函数的导数与微分 本章简介导数与微分是微分学中的两个基本概念。其中导数是研究函数相对于自变量的变化的快慢程度,即函数的变化率;而微分则是指当自变量有微小变化时,函数改变量的近似值。本章重点导数与微分的概念;基本初等函数的求导公式;求导法则。本章难点导数与微分的概念;复合函数的求导法则。第一节 导数的概念 一、两个引例 二、导数的定义 三、求导举例 四、导数的几何意义 五、函数的可导性与连续性的关系 本节内容提要本节重点导数的概念;左,右导数的概念:导数的几何意义;函数可导与连续的关系。本节难点导数概念的理解;可导的充要条件;利用导数几何意义求切线(法线)方程;判断函数在一点处是否可导和连续;利用导数定义求导;教学方法启发式教学手段多媒体课件和面授讲解相结合教学课时 3课时一、两个引例 1、变速直线运动的速度设动点在时刻t在某一直线上的位置坐标为s,于是该动点的运动规律可由函数s=s(t)确定。我们要求在某一t0时刻的瞬时速度v(t0)。在时间段t0,t0+内,动点经过的路程为 于是 即为该时间段内动点的平均速度。它并不是t0时刻的瞬时速度v(t0),但是如果时间间隔 较短,则有 。显然,时间间隔 越短,平均速度 与瞬时速度v(t0)的近似程度就越好。也就是说,当 无限缩短时,平均速度 就会无限接近于瞬时速度v(t0),而运用我们第一章所学的极限概念,就有这样,该极限值就是t0时刻的瞬时速度v(t0)。2、曲线的切线 设有曲线C及C上一点M,在点M外另取C上一点N做割线MN。当N沿曲线C趋于点M时,如果割线MN的极限位置为MT,则称直线MT为曲线C在点M处的切线。设割线MN与X轴的夹角为 切线MT与X轴的夹角为 。曲线方程为y=f(x),点M的坐标为(x0,y0),点N的坐标为 。于是,割线MN的斜率为:。当点N沿曲线C趋向点M时,就有 ,割线的斜率 就会无限接近切线的斜率 ,又由极限的定义,有即为切线的斜率。二、导数的定义 上面所讨论的两个问题,一个是物理问题,一个是几何问题。但是当我们抛开它们的具体意义而只考虑其中的数量关系时,就会发现本质上完全相同的一个极限:即因变量的改变量 与自变量的改变量 之比,当自变量的改变量 趋于0时的极限。这就是导数。1、定义 设函数y=f(x)在点x0的某个邻域内有定义,当自变量x在x0处取得增量 时,相应的函数y取得增量 在x0点处的导数,称为x0点的导数值。注:导数的定义也可取如下两种形式:2、区间可导和导函数(1)如果函数y=f(x)在某个开区间(a,b)内每一点x处均可导,则称函数y=f(x)在区间(a,b)内可导。(2)若函数y=f(x)在某一范围内每一点均可导,则在该范围内每取一个自变量x的值,就可得到一个唯一对应的导数值,这就构成了一个新的函数,称为原函数y=f(x)的导函数,记做 导函数往往简称为导数。用极限表示为:3、左右导数(1)称左极限 为函数f(x)在x0点的左导数,记做 。(2)称右极限 为函数f(x)在x0点的右导数,记做 。4、可导的充要条件函数y=f(x)在点x0处可导的充要条件是左右导数都存在且相等。三、求导举例 根据导数定义求导,可分为如下三个步骤:四、导数的几何意义 函数y=f(x)在 处的导数 在几何上表示曲线 y=f(x)在 处的切线的斜率,即 ,为切线与x轴正向的夹角。根据点斜式直线方程,可得 处的切线方程为:相应点处的法线方程为:可导性与连续的关系:若函数f(x)在点x可导,则它在点x处必连续。而若函数在该点连续却不一定可导。五、函数的可导性与连续性的关系

    注意事项

    本文(《函数的导数与微分》PPT课件.ppt)为本站会员(wuy****n92)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开