欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    余弦函数图像与性质讲课教案.ppt

    • 资源ID:77691141       资源大小:860KB        全文页数:26页
    • 资源格式: PPT        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    余弦函数图像与性质讲课教案.ppt

    余弦函数图像与性质余弦函数图像与性质x6yo-12345-2-3-41 正弦、余弦函数的图象正弦、余弦函数的图象 余弦函数余弦函数的图象的图象 正弦函数正弦函数的图象的图象 x6yo-12345-2-3-41y=cosx=sin(x+),xR余弦曲余弦曲线线(0,1)(,0)(,-1)(,0)(2,1)正弦曲正弦曲线线形状完全一样形状完全一样只是位置不同只是位置不同xyo1-1-2-2 3 4 正弦曲线正弦曲线-2-o 2 3 x-11y余弦曲线余弦曲线 函数函数定义域定义域 值域值域RRyx01-1 y=sinx (x R)当当x=x=时,函数值时,函数值y y取得最大值取得最大值1 1;当当x=x=时,函数值时,函数值y y取得最小值取得最小值-1-1观察下面图象:yx01-1 y=cosx(x R)当当x=时,函数值时,函数值y取得最大值取得最大值1;当当x=x=时,函数值时,函数值y y取得最小值取得最小值-1-1观察下面图象:性质性质3:周期性:周期性周期函数的定义:周期函数的定义:对定义域内的对定义域内的任意任意的的x x的值,的值,存在一个常数存在一个常数T0T0,使得,使得T T叫作周期叫作周期 因为终边相同的角的三角函数值相同,所以因为终边相同的角的三角函数值相同,所以y=sinx的图象在的图象在,与与y=sinx,x0,2的图象相同的图象相同正弦曲线正弦曲线-1-1因为终边相同的角的三角函数值相同,所以因为终边相同的角的三角函数值相同,所以y=cosx的图象在的图象在,与与y=cosx,x0,2的图象相同的图象相同余弦曲线余弦曲线-1-1 由此可知,由此可知,都是这两个函数的周期。都是这两个函数的周期。对于一个周期函数对于一个周期函数 ,如果在,如果在它所有的周期中存在一个最小的它所有的周期中存在一个最小的正数,那么这个最小的正数就叫正数,那么这个最小的正数就叫做做 的最小正周期。的最小正周期。根据上述定义,可知:根据上述定义,可知:都是它的周期,都是它的周期,正弦函数、余弦函数都是周期函数,正弦函数、余弦函数都是周期函数,最小正周期为最小正周期为 正弦、余弦函数的图象正弦、余弦函数的图象x6yo-12345-2-3-41y=sinx (x R)x6o-12345-2-3-41y y=cosx (x R)定义域定义域值值 域域周期性周期性x Ry -1,1 T=2 正弦、余弦函数的奇偶性正弦、余弦函数的奇偶性sin(-x)=-sinx (x R)y=sinx (x R)x6yo-12345-2-3-41是是奇函数奇函数 正弦、余弦函数的奇偶性正弦、余弦函数的奇偶性 一般的,对于函数一般的,对于函数f(x)的定义域内的的定义域内的任任意意一个一个x,都有,都有f(-x)-f(x),则称,则称f(x)为为这这一定义域内一定义域内的奇函数。的奇函数。注意:若注意:若f(x)是奇函数,且是奇函数,且x0在定义域内,则在定义域内,则f(0)0函数函数y=sinx,x0,2是奇函数吗?是奇函数吗?正弦、余弦函数的奇偶性、单调性正弦、余弦函数的奇偶性、单调性 y=sinxyxo-1234-2-31y=sinx (x R)图象关于图象关于原点原点对称对称 正弦、余弦函数的奇偶性正弦、余弦函数的奇偶性x6o-12345-2-3-41ycos(-x)=cosx (x R)y=cosx (x R)是是偶函数偶函数 正弦、余弦函数的奇偶性正弦、余弦函数的奇偶性 一般的,对于函数一般的,对于函数f(x)的定义域内的的定义域内的任任意意一个一个x,都有,都有f(-x)f(x),则称,则称f(x)为为这这一定义域内一定义域内的偶函数。的偶函数。关于关于y轴对称轴对称奇函数:奇函数:f(-x)f(-x)-f(x)-f(x)图象关于原点对称图象关于原点对称偶函数:偶函数:f(-x)f(-x)f(x)f(x)图象关于图象关于y y轴对称轴对称 若若 f(x)f(x)为非奇非偶函数为非奇非偶函数 正弦、余弦函数的奇偶性正弦、余弦函数的奇偶性sin(-x)=-sinx (x R)y=sinx (x R)x6yo-12345-2-3-41是是奇函数奇函数x6o-12345-2-3-41ycos(-x)=cosx (x R)y=cosx (x R)是是偶函数偶函数定义域关于原点对称定义域关于原点对称 正弦、余弦函数的奇偶性正弦、余弦函数的奇偶性例例1:判定下列函数的奇偶性:判定下列函数的奇偶性 正弦、余弦函数的奇偶性正弦、余弦函数的奇偶性 正弦、余弦函数的奇偶性正弦、余弦函数的奇偶性 正弦、余弦函数的单调性正弦、余弦函数的单调性 正弦函数的单调性正弦函数的单调性 y=sinx (x R)增区间为增区间为 ,其值从其值从-1增至增至1xyo-1234-2-31 x sinx 0 -1 0 1 0-1减区间为减区间为 ,其值从其值从 1减至减至-1 +2k,+2k,k Z +2k,+2k,k Z 正弦、余弦函数的单调性正弦、余弦函数的单调性 余弦函数的单调性余弦函数的单调性 y=cosx (x R)x cosx -0 -1 0 1 0-1增区间为增区间为 其值从其值从-1增至增至1 +2k,2k,k Z减区间为减区间为 ,其值从其值从 1减至减至-12k,2k +,k Zyxo-1234-2-31yx01-1 y=sinx (x R)当x=时,函数值y取得最大值1;当x=时,函数值y取得最小值-1观察下面图象:yx01-1 y=cosx(x R)当x=时,函数值y取得最大值1;当x=时,函数值y取得最小值-1观察下面图象:函函 数数 性性 质质y=sinx (kz)y=cosx (kz)定义域定义域值域值域最值及相应的最值及相应的 x的集合的集合周期性周期性奇偶性奇偶性单调性单调性对称中心对称中心对称轴对称轴x Rx Rx Rx R-1,1-1,1-1,1-1,1x=2kx=2k时时y ymaxmax=1=1x=2k+x=2k+时时 y yminmin=-1=-1周期为T=2周期为周期为T=2T=2奇函数奇函数偶函数偶函数在x2k,2k+上都是增函数 ,在x2k-,2k 上都是减函数 。(k,0)(k,0)x=kx=2k+时时y ymaxmax=1=1x=2kx=2k-时时 ymin=-122在x2k-,2k+上都是增函数 ,在x2k+,2k+上都是减函数.22232(k+,0)(k+,0)2x=k+2 正弦、余弦函数的图象正弦、余弦函数的图象 例例 画出函数画出函数y=-cosx,x 0,2 的简图:的简图:x cosx-cosx 0 2 10-101 -1 0 1 0 -1 yxo1-1y=-cosx,x 0,2 y=cosx,x 0,2 正弦、余弦函数的图象正弦、余弦函数的图象 正弦、余弦函数的图象正弦、余弦函数的图象 小小结结1.正弦曲线、余弦曲线正弦曲线、余弦曲线几何画法几何画法 五点法五点法2.注意与诱导公式、三角函数线等知识的联系注意与诱导公式、三角函数线等知识的联系yxo1-1y=sinx,x 0,2 y=cosx,x 0,2 结束!结束!

    注意事项

    本文(余弦函数图像与性质讲课教案.ppt)为本站会员(豆****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开