椭球面元素归算至高斯平面高斯投影.pptx
知识点及学习要求 1高斯投影的基本概念;2正形投影的一般条件;3高斯平面直角坐标与大地坐标的相互转换高斯投影的正算与反算4椭球面上观测成果(水平方向、距离)归化到高斯平面上的计算;5高斯投影的邻带换算;6工程测量投影面与投影带的选择。难点在对本章的学习中,首先要理解和掌握高斯投影的概念。高斯正算和反算计算;方向改化和距离改化计算;高斯投影带的换算与应用;工程测量中投影面与投影带的选择。返回本章首页第1页/共42页8.1 8.1 高斯投影概述高斯投影概述1 投影与变形 地图投影:就是将椭球面各元素(包括坐标、方向和长度)按一定的数学法则投影到平面上。研究这个问题的专门学科叫地图投影学。可用下面两个方程式(坐标投影公式)表示:式中L,B是椭球面上某点的大地坐标,而x,y是该点投影后的平面直角坐标。等角投影投影前后的角度相等,但长度和面积有变形;等距投影投影前后的长度相等,但角度和面积有变形;等积投影投影前后的面积相等,但角度和长度有变形。地图投影的方式第2页/共42页投影变形:椭球面是一个凸起的、不可展平的曲面。将这个曲面上的元素(距离、角度、图形)投影到平面上,就会和原来的距离、角度、图形呈现差异,这一差异称为投影变形。投影变形的形式:角度变形、投影变形的形式:角度变形、长度变形和面积变形。长度变形和面积变形。1 投影与变形第3页/共42页2 控制测量对地图投影的要求应当采用等角投影(又称为正形投影)采用正形投影时,在三角测量中大量的角度观测元素在投影前后保持不变;在测制的地图时,采用等角投影可以保证在有限的范围内使得地图上图形同椭球上原形保持相似。在采用的正形投影中,要求长度和面积变形不大,并能够应用简单公式计算由于这些变形而带来的改正数。能按分带投影第4页/共42页3 高斯投影的基本概念(1)基本概念:如下图所示,假想有一个椭圆柱面横套在地球椭球体外面,并与某一条子午线(此子午线称为中央子午线或轴子午线)相切,椭圆柱的中心轴通过椭球体中心,然后用一定投影方法,将中央子午线两侧各一定经差范围内的地区投影到椭圆柱面上,再将此柱面展开即成为投影面,此投影为高斯投影。高斯投影是正形投影的一种。第5页/共42页(2)分带投影高斯投影 带:自 子午线起每隔经差 自西向东分带,依次编号1,2,3,。我国 带中央子午线的经度,由 起每隔 而至 ,共计11带(1323带),带号用 表示,中央子午线的经度用 表示,它们的关系是 ,如下图所示。高斯投影 带:它的中央子午线一部分同 带中央子午线重合,一部分同 带的分界子午线重合,如用 表示 带的带号,表示 带中央子午线经度,它们的关系 下图所示。我国 带共计22带(2445带)。第6页/共42页在投影面上,中央子午线和赤道的投影都是直线,并且以中央子午线和赤道的交点 作为坐标原点,以中央子午线的投影为纵坐标 轴,以赤道的投影为横坐标 轴。(3)高斯平面直角坐标系第7页/共42页在我国 坐标都是正的,坐标的最大值(在赤道上)约为330km。为了避免出现负的横坐标,可在横坐标上加上500 000m。此外还应在坐标前面再冠以带号。这种坐标称为国家统一坐标。例如,有一点 =19 123 456.789m,该点位于19带内,其相对于中央子午线而言的横坐标则是:首先去掉带号,再减去500000m,最后得 =-376 543.211m。(3)高斯平面直角坐标系第8页/共42页(4)高斯平面投影的特点:第9页/共42页(5)椭球面三角系化算到高斯投影面第10页/共42页将椭球面三角系归算到高斯投影面的主要内容是:将起始点的大地坐标归算为高斯平面直角坐标;为了检核还应进行反算,亦即根据反算。通过计算该点的子午线收敛角及方向改正,将椭球面上起算边大地方位角归算到高斯平面上相应边的坐标方位角。通过计算各方向的曲率改正和方向改正,将椭球面上各三角形内角归算到高斯平面上的由相应直线组成的三角形内角。通过计算距离改正,将椭球面上起算边的长度归算到高斯平面上的直线长度。当控制网跨越两个相邻投影带,需要进行平面坐标的邻带换算。返回本章首页第11页/共42页8.2 8.2 正形投影的一般条件正形投影的一般条件高斯投影首先必须满足正形投影的一般条件。图a为椭球面,图b为它在平面上的投影。在椭球面上有无限接近的两点P1和 P2,投影后为P1和 ,其坐标均已注在图上,为大地线的微分弧长,其方位角为 。在投影面上,建立如图b所示的坐标系,的投影弧长为 。图a图b第12页/共42页椭球面到平面的正形投影一般公式称柯西-黎曼条件:平面正形投影到椭球面上的一般条件:返回本章首页第13页/共42页8.3 8.3 高斯平面直角坐标系与大地坐标系高斯平面直角坐标系与大地坐标系1 高斯投影坐标正算公式(1)高斯投影正算:已知椭球面上某点的大地坐标 ,求该点在高斯投影平面上的直角坐标 ,即 的坐标变换。(2)投影变换必须满足的条件:中央子午线投影后为直线;中央子午线投影后长度不变;投影具有正形性质,即正形投影条件。(3)投影过程 在椭球面上有对称于中央子午线的两点 和 ,它们的大地坐标分别为(l,B)及(-l,B),式中 为椭球面上 点的经度与中央子午线 的经度差:,点在中央子午线之东,为正,在西则为负,则投影后的平面坐标一定 为 和 。第14页/共42页(4)计算公式当要求转换精度精确至0.00lm时,用下式计算 第15页/共42页(1)高斯投影反算:已知某点的高斯投影平面上直角坐标 ,求该点在椭球面上的大地坐标 ,即 的坐标变换。(2)投影变换必须满足的条件 坐标轴投影成中央子午线,是投影的对称轴;轴上的长度投影保持不变;投影具有正形性质,即正形投影条件。(3)投影过程根据计算纵坐标在椭球面上的投影的底点纬度 ,接着按 计算()及经差 ,最后得到 、。2 高斯投影坐标反算公式第16页/共42页(4)计算公式当要求转换精度至 时,可简化为下式:第17页/共42页3 高斯投影相邻带的坐标换算(1)产生换带的原因 高斯投影为了限制高斯投影的长度变形,以中央子午线进行分带,把投影范围限制在中央子午线东、西两侧一定的范围内。因而,使得统一的坐标系分割成各带的独立坐标系。在工程应用中,往往要用到相邻带中的点坐标,有时工程测量中要求采用 带、带或任意带,而国家控制点通常只有 带坐标,这时就产生了 带同 带(或 带、任意带)之间的相互坐标换算问题,如下图所示:第18页/共42页把椭球面上的大地坐标作为过渡坐标。首先把某投影带(比如带)内有关点的平面坐标 ,利用高斯投影反算公式换算成椭球面上的大地坐标,进而得到;然后再由大地坐标 利用投影正算公式换算成相邻带的(第带)的平面坐标。在这一步计算时,要根据第带的中央子午线来计算经差,亦即此时(2)应用高斯投影正、反算公式间接进行换带计算计算过程:第19页/共42页计算步骤:根据,利用高斯反算公计算换算,,得到 ,。采用已求得的,,并顾及到第带的中央子午线,求得,利用高斯正算公式计算第带的直角坐标 ,。为了检核计算的正确性,要求每步都应进行往返计算算例在中央子午线 的带中,有某一点的平面直角坐标,现要求计算该点在中央子午线 的第带的平面直角坐标。第20页/共42页4 子午线收敛角公式(1)子午线收敛角的概念 如右图所示,、及 分别为椭球面点、过点的子午线 及平行圈 在高斯平面上的描写。由图可知,所谓点 子午线收敛角就是 在 上的切线 与 坐标北之间的夹角,用 表示。在椭球面上,因为子午线同平行圈正交,又由于投影具有正形性质,因此它们的描写线 及 也必正交,由图可见,平面子午线收敛角也就是等于 在 点上的切线同平面坐标系横轴 的倾角。第21页/共42页 (2)由大地坐标 计算平面子午线收敛角公式(3)由平面坐标计算平面子午线收敛角的公式上式计算精度可达1。如果要达到0.001计算精度,可用下式计算:(4)实用公式已知大地坐标 计算子午线收敛角已知平面坐标已知平面坐标计算子午线收敛角返回本章首页第22页/共42页8.4 8.4 椭球面上观测成果归化到高斯平面上计算椭球面上观测成果归化到高斯平面上计算1 概述由于高斯投影是正形投影,椭球面上大地线间的夹角与它们在高斯平面上的投影曲线之间的夹角相等。为了在平面上利用平面三角学公式进行计算,须把大地线的投影曲线用其弦线来代替。控制网归算到高斯平面上的内容有:起算点大地坐标的归算将起算点大地坐标 归算为高斯平面直角坐标。起算方向角的归算。距离改化计算椭球面上已知的大地线边长(或观测的大地线边长)归算至平面上相应的弦线长度。方向改正计算椭球面上各大地线的方向值归算为平面上相应的弦线方向值。第23页/共42页第24页/共42页 2 方向改化(1)概念如图所示,若将椭球面上的大地线方向改化为平面上的弦线ab方向,其相差一个角值,即称为方向改化值。(2)方向改化的过程 如图所示,若将大地线 方向改化为弦线a b方向。过A,B点,在球面上各作一大圆弧与轴子午线正交,其交点分别为D,E,它们在投影面上的投影分别为ad和be。由于是把地球近似看成球,故ad和be都是垂直于x轴的直线。在a,b点上的方向改化分别为 和 。当大地线长度不大于10km,y坐标不大于l00km时,二者之差不大于0.05,因而可近似认为 =第25页/共42页(3)计算公式球面角超公式为:适用于三、四等三角测量的方向改正的计算公式:式中 ,为a、b两点的y坐标的自然的平均值。第26页/共42页(1)概念如右图所示,设椭球体上有两点 及其大地线 ,在高斯投影面上的投影为 及 。是一条曲线,而连接 两点的直线为 D如前所述由 S化至D所加的改正,即为距离改正 。3 距离改化(2)长度比和长度变形长度比 :指椭球面上某点的一微分元素 与其投影面上的相应微分元素 之比,则 称为该点的长度比。长度变形:由于长度比恒大于1,故称(m-1)为长度变形。第27页/共42页 式中:表示按大地线始末两端点的平均纬度计算的椭球的平均曲率半径。为投影线两端点的平均自然横坐标值。(4)长度比和长度变形的特点当ym=0(或l=0)时,m=1,即中央子午线投影后长度不变;当ym0(或l0)时,即离开中央子午线时,长度变形(m-1)恒为正,离开中央子午线的边长经投影后变长。长度变形()与 (或 )成比例地增大,对于在椭球面上等长的子午线来说,离开中央子午线愈远的那条,其长度变形愈大。(5)距离改化计算公式:或(3)长度比m的计算公式:返回本章首页第28页/共42页8.5 8.5 工程测量投影面与投影带选择工程测量投影面与投影带选择对于工程测量,其中包括城市测量,既有测绘大比例尺图的任务,又有满足各种工程建设和市政建设施工放样工作的要求。如何根据这些目的和要求合适地选择投影面和投影带,经济合理地确立工程平面控制网的坐标系,在工程测量是一个重要的课题。1 概述第29页/共42页2 工程测量中选择投影面和投影带的原因(1)有关投影变形的基本概念 平面控制测量投影面和投影带的选择,主要是解决长度变形问题。这种投影变形主要是由于以下两种因素引起的:实测边长归算到参考椭球面上的变形影响,其值为:式中:为归算边高出参考椭球面的平均高程,为归算边的长度,为归算边方向参考椭球法截弧的曲率半径。归算边长的相对变形:值是负值,表明将地面实量长度归算到参考椭球面上,总是缩短的;值与 ,成正比,随 增大而增大。第30页/共42页 将参考椭球面上的边长归算到高斯投影面上的变形影响,其值为:式中:,即为投影归算边长,为归算边两端点横坐标平均值,为参考椭球面平均曲率半径。投影边长的相对投影变形为 值总是正值,表明将椭球面上长度投影到高斯面上,总是增大的;值随着 平方成正比而增大,离中央子午线愈远,其变形愈大。第31页/共42页第32页/共42页(2)工程测量平面控制网的精度要求工程测量控制网不但应作为测绘大比例尺图的控制基础,还应作为城市建设和各种工程建设施工放样测设数据的依据。为了便于施工放样工作的顺利进行,要求由控制点坐标直接反算的边长与实地量得的边长,在长度上应该相等,这就是说由上述两项归算投影改正而带来的长度变形或者改正数,不得大于施工放样的精度要求。一般来说,施工放样的方格网和建筑轴线的测量精度为1/5 0001/20 000。因此,由投影归算引起的控制网长度变形应小于施工放样允许误差的1/2,即相对误差为1/10 0001/40 000,也就是说,每公里的长度改正数不应该大于102.5cm。第33页/共42页通过改变 从而选择合适的高程参考面,将抵偿分带投影变形,这种方法通常称为抵偿投影面的高斯正形投影;通过改变,从而对中央子午线作适当移动,来抵偿由高程面的边长归算到参考椭球面上的投影变形,这就是通常所说的任意带高斯正形投影;通过既改变 (选择高程参考面),又改变 (移动中央子午线),来共同抵偿两项归算改正变形,这就是所谓的具有高程抵偿面的任意带高斯正形投影。3 投影变形的处理方法第34页/共42页4 工程测量中几种可能采用的直角坐标系(1)国家30带高斯正形投影平面直角坐标系 当测区平均高程在l00m以下,且值不大于40km时,其投影变形值及均小于2.5cm,可以满足大比例尺测图和工程放样的精度要求。,在偏离中央子午线不远和地面平均高程不大的地区,不需考虑投影变形问题,直接采用国家统一的带高斯正形投影平面直角坐标系作为工程测量的坐标系。第35页/共42页(2)抵偿投影面的30带高斯正形投影平面直角坐标系 在这种坐标系中,依然采用国家30带高斯投影,但投影的高程面不是参考椭球面而是依据补偿高斯投影长度变形而选择的高程参考面。在这个高程参考面上,长度变形为零。当一定时,可求得:则投影面高为:第36页/共42页 某测区海拔=2 000(m),最边缘中央子午线100(km),当S =1000(m)时,则有而 超过允许值(102.5cm)。这时为不改变中央子午线位置,而选择一个合适的高程参考面,经计算得高差:将地面实测距离归算到:算例:第37页/共42页在这种坐标系中,仍把地面观测结果归算到参考椭球面上,但投影带的中央子午线不按国家30带的划分方法,而是依据补偿高程面归算长度变形而选择的某一条子午线作为中央子午线。保持 不变,于是求得(3)任意带高斯正形投影平面直角坐标系第38页/共42页 某测区相对参考椭球面的高程 =500m,为抵偿地面观测值向参考椭球面上归算的改正值,依上式算得 即选择与该测区相距80km处的子午线。此时在=80km处,两项改正项得到完全补偿。算例:但在实际应用这种坐标系时,往往是选取过测区边缘,或测区中央,或测区内某一点的子午线作为中央子午线,而不经过上述的计算。第39页/共42页(4)具有高程抵偿面的任意带高斯正形投影平面直角坐标系 在这种坐标系中,往往是指投影的中央子午线选在测区的中央,地面观测值归算到测区平均高程面上,按高斯正形投影计算平面直角坐标。由此可见,这是综合第二、三两种坐标系长处的一种任意高斯直角坐标系。显然,这种坐标系更能有效地实现两种长度变形改正的补偿。(5)假定平面直角坐标系 当测区控制面积小于100km2时,可不进行方向和距离改正,直接把局部地球表面作为平面建立独立的平面直角坐标系。这时,起算点坐标及起算方位角,最好能与国家网联系,如果联系有困难,可自行测定边长和方位,而起始点坐标可假定。这种假定平面直角坐标系只限于某种工程建筑施工之用。返回本章首页第40页/共42页 1、控制测量对地图投影的要求有哪些?2、将椭球面三角系归算至高斯投影面的主要内容有哪些?3、高斯投影必须满足的三个条件是什么?4、什么是高斯投影坐标的正算和反算?5、为什么要进行换带计算?6、应用高斯投影正、反算公式间接进行换带计算的方法是什么?7、在工程测量中,采用哪三种手段解决投影变形带来的不便?习习 题题第41页/共42页感谢您的观看。第42页/共42页