小学数学思维训练《巧算》.docx
小学数学思维训练 -巧算一、知识讲解巧妙计算是在常规计算基础上,寻找规律和捷径,使计算更加快速、准确.巧思妙算,在快乐学习中提升思维,其中的趣味无穷.来源:学#科#网巧算的具体方法有:1凑整法 补数:两个数相加,若能恰好凑成整十、整百、整千、整万,就把其中的一个数叫做另一个数的“补数”.如:1+9=10, 11+89=100, 在上面算式中,1叫9的“补数”;89叫11的“补数”,11也叫89的“补数”.也就是说两个数互为“补数”.2去括号和添括号的法则在只有加减运算的算式里,如果括号前面是“”号,则不论去掉括号或添上括号,括号里面的运算符号都不变;如果括号前面是“-”号,则不论去掉括号或添上括号,括号里面的运算符号都要改变,“+”变“-”,“-”变“+”,即:a(bcd)abcda-(bad)a-b-c-d来源:Zxxk.Coma-(b-c)a-b+c3改变运算顺序在只有“+”、“-”号的混合算式中,运算顺序可改变,即-带符号“搬家”,注意:每个数前面的运算符号是这个数的符号.如+46,-125,+54.而325前面虽然没有符号,应看作是+325.两个数相同而符号相反的数可以直接“抵消”掉. 4几种特殊因数的巧算两数的乘积是整十、整百、整千的,要先乘.为此,要牢记下面这三个特殊的等式:5×2=10 25×4=100 125×8=1000一个数×10,数后添0;一个数×100,数后添00;一个数×1000,数后添000;以此类推.一个数×9,数后添0,再减此数;一个数×99,数后添00,再减此数;一个数×999,数后添000,再减此数; 以此类推.如:12×9120-12108二、例题解析例1 计算999999999999999分析:在涉及所有数字都是9的计算中,常使用凑整法.例如将999化成10001去计算.这是小学数学中常用的一种技巧.解: 999999999999999来源:Zxxk.Com(101)(100-1)(10001)(10000-1)(100000-1)10100100010000100000-5111110-5111105 例2 计算5499×9945分析:此题表面上看没有巧妙的算法,但如果把45和54先结合可得99,就可以运用乘法分配律进行简算了.来源:Zxxk.Com例3 (96×48×91)÷(32×24×13)分析:这道题可以看作去括号法则,“、÷”后面去括号,括号里面的运算符号要变号,括号内“”变成“”,“”变成“”,“×”变成“÷”,“÷”变成“×”,反过来使用就是添括号的法则.解: (96×48×91)÷(32×24×13) 96×48×91÷32÷24÷13 96÷32×48÷24×91÷13 (96÷32)×(48÷24)×(91÷13) 3×2×7 42例4 7÷2311÷1711÷2315÷2323÷1717÷2319÷23分析:此题先根据相同除数分组,再运用乘法分配律推广公式即可.例5 106×109分析:求两个超过100的数相乘的积,可以先把一个数加上另一个数与100的差,在所得的末尾添两个零,在加上两个因数分别与100的之差的积.解: 106×109来源:学科网(1069)×1006×9115×10054115005411554三、巩固练习 (一)选择题1(广州)1000+999-998-997+996+104+103-102-101=()A225 B900 C1000 D40002 90+91+92+93+99的和为()A845 B945 C1005 D1025399-97+95-93+91-89+3-1=()A55 B15 C50 D542006-2005-2004+2003+2002-2001+1999+1998-1997-8+7+6-5-4+3+2-1的计算结果是()A0B1C2D200151+2+3+100+3+2+1=()A1000B10000C1000D10000006请在下列(A)(E)中找出3个连续2位数的积A1321 B.12144 C.980100 D.5812 E.44568(二)填空题1(攀枝花)如果规定ab=13×a-b÷8,那么1724的最后结果是 .21÷(2÷3)÷(3÷4)÷(4÷5)÷(5÷6)= .32008×2006+2007×2005-2007×2006-2008×2005= .4计算:101×66÷123÷66×123÷101= .5计算9999×4444÷6666÷2222的结果是 .(三)解答题1已知a=0.0000025,b=0.000008, 2001个0 2001个0求a×b,a÷b2不计算积,试比较12489×12356与12359×12486的大小3.求1×2×3××2008×2009的计算结果中,末尾连续的“0”有多少个?41111111111×9999999999的乘积中有多少个数字为奇数?5有一串数,任何相邻的四个数之和都是25已知第一个数是3,第六个数是6,第11个数是7这串数中第26个数是几?巩固练习答案:(一)选择:B、B、C、D、B、B (二)填空:218、3 、1、 1、3 (三)解答:1.解: a×b:由于0.25×0.8=0.2,所以a×b =0.0000025(2001个零)×0.0008(2001个零)=0.02(前边有2000×2+1=4001个零);a÷b=0.0000025(2001个零)÷0.0008(2001个零)=2.5÷8=0.31252.解:12489×12356=(12486+3)×12356=12486×12356+3×12356;12359×12486=12486×(12356+3)=12486×12356+3×12486,1235612486因此,12489×1235612359×124863.解:因为每一个5与每一个2相乘等于一个10即可得到末尾1个0,那么可利用分解质因数的方法将1到2009这些数中共含有几个因数5、几个因数2,因为分解质因数后2的个数要远远大于5的个数,所以有几个5就能形成几个10,也就是所求的几个0了,进行计算即可得到答案 4.解:1111111111×9999999999=1111111111×(100000000001)=111111111100000000001111111111=11111111108888888889 所以乘积中有十个数字是奇数.5. 解:因为任意相邻四个数之和为25,第1个是3,则第2,3,4之和是22,则第5个是3,已知第6个是6,则第7,8之和是16,则第9个是3,发现每隔4个数数值是相同的,即3,6,7,9,3,6,7,9,3,6,7,9;因为26÷4=6(组)2(个),所以这串数中第26个数是6.8