向量的概念及表示 改精.ppt
向量的概念及表示 改第1页,本讲稿共17页想一想:想一想:位移和距离这两个量有什么不同?位移和距离这两个量有什么不同?oBA2000米1500米位移既有大小又有方向位移既有大小又有方向距离只有大小没有方向距离只有大小没有方向第2页,本讲稿共17页向量的概念及表示生活中有向量 生活中用向量第3页,本讲稿共17页阅读课本 P7476完成下列问题:1.1.什么是向量什么是向量?年龄、身高、体重、长度、面积、体积、质量、年龄、身高、体重、长度、面积、体积、质量、时间是向量吗?时间是向量吗?2.2.怎么表示向量怎么表示向量?3.3.什么是向量的模什么是向量的模?4.4.有哪些特殊向量有哪些特殊向量?5.5.向量间有什么特殊关系向量间有什么特殊关系?既有既有大小大小又有又有方向方向的量称为向量的量称为向量.1 1)几何表示;)几何表示;2 2)字母表示;)字母表示;指向量的指向量的长度长度零向量零向量单位向量单位向量平行向量平行向量共线向量共线向量相等向量相等向量相反向量相反向量第4页,本讲稿共17页第5页,本讲稿共17页A AB BC CD DE EF FO O变变1:1:以图中以图中A,B,C,D,E,F,OA,B,C,D,E,F,O七点中的任一点为始点,七点中的任一点为始点,与始点不同的另一点为终点的所有向量中,与向量与始点不同的另一点为终点的所有向量中,与向量 相等的向量有几个?相等的向量有几个?变变2 2:的相反向量有几个?的相反向量有几个?3个4个第6页,本讲稿共17页 例例2 2:在图中的:在图中的 方格纸中有一个向量方格纸中有一个向量 ,分别以图中的格点为起点和终点作向量,其中与分别以图中的格点为起点和终点作向量,其中与 相等的向量有多少个?与相等的向量有多少个?与 长度相等的共线向量长度相等的共线向量有多少个?(有多少个?(除外)除外)A AB B第7页,本讲稿共17页概念辨析:概念辨析:第8页,本讲稿共17页1 1、下列说法正确的是(、下列说法正确的是()课堂练习C C第9页,本讲稿共17页2 2、判断下列说法是否正确:、判断下列说法是否正确:第10页,本讲稿共17页探究:如图,以方格纸中的格点为起点和终点如图,以方格纸中的格点为起点和终点的所有非零向量中,有多少种大小不同的模?的所有非零向量中,有多少种大小不同的模?有多少种不同的方向?有多少种不同的方向?第11页,本讲稿共17页相等向量与相等向量与相反向量相反向量课堂小结:单位向量单位向量与零向量与零向量向向 量量向量的大小向量的大小(长度、模长度、模)向量的方向向量的方向有向线段有向线段平行向量平行向量(共线向量共线向量)第12页,本讲稿共17页向量的表示方法向量的表示方法:手写时写成手写时写成:有向线段的长度表示有向线段的长度表示向量的大小向量的大小箭头所指的方向表示箭头所指的方向表示向量的方向向量的方向 几何表示法:几何表示法:用一条有向线段用一条有向线段 来表示来表示.字母表示法:字母表示法:用字母用字母a a、b b、c c(黑体字黑体字)或或 来表示来表示.A(起点)(起点)B(终点)(终点)第13页,本讲稿共17页2 2、单位向量:单位向量:长度为长度为 1 1 个单位长度个单位长度的向量的向量.零零向量模为向量模为0 0,方向不确定,方向不确定.单位向量单位向量模为模为1 1,方向不一定相同,方向不一定相同.两个特殊向量两个特殊向量:思考:平面直角坐标系内,起点在原点的单位向量,平面直角坐标系内,起点在原点的单位向量,它们的终点的轨迹是什么图形?它们的终点的轨迹是什么图形?1 1、零向量:零向量:长度为长度为 0 0 的向量的向量.记作记作 .O Oy yx x第14页,本讲稿共17页平行向量:平行向量:规定规定零向量零向量与任一向量平行与任一向量平行.两向量的平行两向量的平行与平面几何里与平面几何里两线段的平行两线段的平行有什么区别?有什么区别?方向相同或相反的方向相同或相反的非零向量非零向量叫做平行向量叫做平行向量.第15页,本讲稿共17页任意任意一组平行向量都可以平移到同一直线上一组平行向量都可以平移到同一直线上共线向量:共线向量:平行向量又称共线向量平行向量又称共线向量两向量的共线两向量的共线与平面几何里与平面几何里两线段的共线两线段的共线是否一样?是否一样?第16页,本讲稿共17页相等向量相等向量:长度相等长度相等且且方向相同方向相同的向量的向量.相反向量相反向量:思考:第17页,本讲稿共17页