【苏科版】数学七年级下册《期末检测试题》(带答案).pdf
-
资源ID:78348952
资源大小:379.20KB
全文页数:22页
- 资源格式: PDF
下载积分:10金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
【苏科版】数学七年级下册《期末检测试题》(带答案).pdf
苏科版七年级下学期期末考试数学试题一、选择题(本大题共有6 小题,每小题 3 分,共 18分)1.不等式360 x的解可以是()A.1 B.2 C.3 D.4 2.下列计算正确的是()A.a3+a3=a6B.(3x)2=6x2C.(x+y)2=x2+y2D.(-x-y)(y-x)=x2-y23.下列等式从左到右的变形,属于因式分解的是()A.2(3)(2)6xxxxB.24(2)(2)xxxC.2323824a babD.1()1axaya xy4.下列命题:(1)同位角相等;(2)无论 x 取什么值,代数式2-610 xx的值不小于1;(3)多边形的外角和小于内角和;(4)面积相等的两个三角形是全等三角形其中真命题的个数有()A.0 B.1 C.2 D.3 5.如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3 B.m+6 C.2m+3 D.2m+6 6.将一个棱长为3 的正方体的表面涂上颜色,分割成棱长为1 的小正方体(如图)设其中一面、两面、三面涂色的小正方体的个数分别为为1x、2x、3x,则1x、2x、3x之间的关系为()A.1x2x3x 1 B.1x2x3x1 C.1x2x3x 2 D.1x2x3x2 二、填空题(本大题共有10 小题,每小题 3 分,共 30 分)7.553()xxx=_8.命题“对顶角相等”的逆命题是 _.9.生物学家发现了一种病毒的长度约为0.00000432 毫米,数据0.00000432 用科学记数法表示为_10.若一个多边形的每一个内角都是108,那么这个多边形的内角和为_ 11.若1mn,则2()22mnmn的值是 _.12.如图,AB、CD相交于点 O,试添加一个条件使得AOD COB,你添加的条件是 _(只需写一个)13.已知21xy是方程组51axbybxay的解,则ab 的值是()A.1B.2C.3D.414.若关于 x 的一元一次不等式组10,0 xxa无解,则a 的取值范围是 _15.甲、乙、丙3 人从图书馆各借了一本书,他们相约在每个星期天相互交换读完的书经过数次交换后,他们都读完了这3本书若乙读的第三本书是丙读的第二本书,则乙读的第二本书是甲读的第_本书 16.如图是 5 5 的正方形网格,ABC的顶点都在小正方形的顶点上,像ABC这样的三角形叫格点三角形画与 ABC有一条公共边且全等的格点三角形,这样的格点三角形最多可以画出_个三、解答题(本大题共有10 小题,共 102分解答时应写出必要的步骤)17.(1)已知:2220110.3,b3,c(),d()33a();比较abcd、的大小,并用“”号连接起来(2)先化简,再求值:4x(x1)(2x+1)(2x1),其中 x=118.因式分解:(1)2126ab cab;(2)25(a+b)29(ab)2 19.解不等式:2192136xx,并把解集表示在数轴上20.用两种方法证明“三角形的外角和等于360”已知:如图,BAE,CBF,ACD 是 ABC 的三个外角求证:BAECBF ACD360.证法 1:_,BAE1CBF2ACD3180 3540,BAECBF ACD540(1 23)_,BAECBF ACD540 180 360.请把证法 1 补充完整,并用不同的方法完成证法2.21.(1)计算:222+nnnxxxx()()(n 为正整数).(2)观察下列各式:1 5+4=32,3 7+4=52,5 9+4=72,探索以上式子的规律,试写出第n 个等式,并说明第n 个等式成立22.(1)将一批重490吨的货物分配给甲、乙两船运输现甲、乙两船已分别运走其任务数的57、37,在已运走的货物中,甲船比乙船多运30 吨求分配给甲、乙两船的任务数各多少吨?(2)自编一道应用题,要求如下:路程应用题三个数据100,25,15必须全部用到,不添加其他数据只要编题,不必解答23.(1)已知 3x+y=2,1y5,求 x 的取值范围(2)一个三角形的三边长分别是xcm、(x+2)cm、(x+4)cm,它的周长不超过39cm,求 x 的取值范围24.画 A,在 A 的两边上分别取点B、C,在 A 的内部取一点P,连接 PB、PC探索 BPC 与A、ABP、ACP 之间的数量关系,并证明你的结论25.某电器超市根据市场需求,计划采购A、B 两种型号的电风扇共40 台该超市准备采购这两种电风扇的金额不少于9000 元,但不超过9100元,且所采购的这两种电风扇可以全部销售完,现已知 A、B 两种型号的电风扇的进价和售价如下表:型号A B 进价(元/台)200 250 售价(元/台)240 300(1)该电器超市这两种型号的电风扇有哪几种采购方案?(2)该电器超市如何采购能获得最大利润?(3)据市场调查,每台A 型电风扇的售价将会提高a万元(a 0),每台 B 型电风扇售价不会改变,该电器超市应该如何采购才可以获得最大利润?(注:利润=售价进价)26.画 AOB=090,并画 AOB 的平分线OC(1)将一块足够大的三角尺的直角顶点落在射线OC 的任意一点P上,并使三角尺的一条直角边与OA 垂直,垂足为点E,另一条直角边与OB 交于点 F(如图 1)证明:PE=PF;(2)把三角尺绕点P旋转,三角尺的两条直角边分别交OA、OB 于点 E、F(如图 2),PE与 PF 相等吗?请直接写出结论:PE PF(填,=);(3)若点 E 在 OA 的反向延长线上,其他条件不变(如图2),PE与 PF相等吗?若相等请进行证明,若不相等请说明理由图1 图2 图3答案与解析一、选择题(本大题共有6 小题,每小题 3 分,共 18分)1.不等式360 x的解可以是()A.1 B.2 C.3 D.4【答案】A【解析】分析:根据不等式解的定义进行分析解答即可.详解:A 选项中,因为当1x时,363630 x,所以1x是360 x的解;B 选项中,因为当2x时,36660 x,所以2x不是360 x的解;C 选项中,因为当3x时,369630 x,所以3x不是 360 x的解;D 选项中,因为当4x时,3612660 x,所以4x不是 360 x的解.故选 A.点睛:熟记不等式解的定义:“能够使不等式左右两边不等关系成立的未知数的值叫做不等式的解”是解答本题的关键.2.下列计算正确的是()A.a3+a3=a6B.(3x)2=6x2C.(x+y)2=x2+y2D.(-x-y)(y-x)=x2-y2【答案】D【解析】分析:根据整式相关运算的运算法则和乘法公式进行计算判断即可.详解:A 选项中,因为3332aaa,所以 A 中计算错误;B 选项中,因为22(3)9xx,所以 B 中计算错误;C 选项中,因为222()2xyxxyy,所以 C 中计算错误;D 选项中,因为2222()()()xyyxxyxy,所以 D 中计算正确.故选 D.点睛:熟知“各选项中所涉及的整式运算的运算法则和乘法公式”是正确解答本题的关键.3.下列等式从左到右的变形,属于因式分解的是()A.2(3)(2)6xxxxB.24(2)(2)xxxC.2323824a babD.1()1axaya xy【答案】B【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案【详解】解:A是整式乘法,故 A 错误;B是因式分解,故 B 正确;C左边不是多项式,不是因式分解,故 C 错误;D右边不是整式积的形式,故 D 错误 故选 B【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式4.下列命题:(1)同位角相等;(2)无论 x 取什么值,代数式2-610 xx的值不小于1;(3)多边形的外角和小于内角和;(4)面积相等的两个三角形是全等三角形其中真命题的个数有()A.0B.1C.2D.3【答案】B【解析】分析:根据题中每个命题所涉及的相关数学知识进行分析判断即可.详解:(1)因为“两个同位角不一定相等”,所以命题“同位角相等”是假命题;(2)2261031xxx,无论x取何值,代数式2610 xx的值都不小于1.命题“无论x 取什么值,代数式2610 xx的值不小于1”是真命题;(3)因为“三角形的外角和大于三角形的内角和”,所以命题“多边形的外角和小于内角和”是假命题;(4)因为“面积相等的两个三角形不一定全等,如:两直角边长分别为3和 4 的直角三角形与两直角边长分别为 2 和 6 的直角三角形的面积是相等的,但它们不全等”,所以命题“面积相等的两个三角形是全等三角形”是假命题.综上所述,上述 4个命题中,真命题只有1 个.故选 B.点睛:熟悉“每个命题所涉及的相关数学知识”且知道“说明一个命题是真命题需推理证明,而说明一个命题是假命题只需举出一个反例”是解答本题的关键.5.如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3 B.m+6 C.2m+3 D.2m+6【答案】C【解析】【分析】由于边长为(m+3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),那么根据正方形的面积公式,可以求出剩余部分的面积,而矩形一边长为3,利用矩形的面积公式即可求出另一边长.【详解】设拼成的矩形一边长为x,则依题意得:(m+3)2 m2=3x,解得,x=(6m+9)3=2m+3,故选 C.6.将一个棱长为3 的正方体的表面涂上颜色,分割成棱长为1 的小正方体(如图)设其中一面、两面、三面涂色的小正方体的个数分别为为1x、2x、3x,则1x、2x、3x之间的关系为()A.1x2x3x1 B.1x2x3x1 C.1x2x3x2 D.1x2x3x2【答案】C【解析】分析:如下图所示,只有1 个面被涂色的小正方体共有6个,有两个面被涂色的小正方体共有12 个,有三个面被涂色的小正方体共有8 个,即1236128xxx,将所得结果代入各选项检验即可作出判断.详解:如下图所示,由图可知:只有1 个面被涂色的小正方体共有6 个,有两个面被涂色的小正方体共有12个,有三个面被涂色的小正方体共有8 个,1236128xxx,1236 1282xxx,即 A 中结论错误,C 中结论正确;123612810 xxx,即 B 和 D 中结论都是错误的.故选 C.点睛:“读懂题意,画出如图所示的示意图,并由此得到123xxx,的值”是解答本题的关键.二、填空题(本大题共有10 小题,每小题 3 分,共 30 分)7.553()xxx=_【答案】x3【解析】分析:根据“同底数幂的除法法则”进行计算即可.详解:原式=523xxx?.故答案为:3x.点睛:本题的解题要点有以下两点:(1)熟记:“同底数幂的除法法则:mnmnaaa(0a)”;(2)注意运算顺序,要先算括号里面的,再算括号外面的.8.命题“对顶角相等”的逆命题是 _.【答案】如果两个角相等,那么它们是对顶角【解析】【分析】将原命题的条件及结论进行交换即可得到其逆命题【详解】原命题的条件是:如果两个角是对顶角,结论是:那么这两个角相等;其逆命题应该为:如两个角相等,那么这两个角是对顶角,简化后即为:相等的角是对顶角【点睛】考查命题与定理,解题的关键是明确逆命题的定义,可以写出一个命题的逆命题9.生物学家发现了一种病毒的长度约为0.00000432 毫米,数据0.00000432 用科学记数法表示为_【答案】4.3210-6;【解析】分析:绝对值小于1 的正数也可以利用科学记数法表示,一般形式为a10n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0 的个数所决定本题解析:将0.00000432 用科学记数法表示为4.32 610.故答案为4.32610.点睛:本题考查了用科学计数法表示较小的数,一般形式为10na,其中110a,n 为由原数左边起第一个不为零的数字前面的0的个数决定.10.若一个多边形的每一个内角都是108,那么这个多边形的内角和为_【答案】540【解析】分析:由题意可得这个多边形的每一个外角都为72,由此可得该多边形的边数为:360 72=5,再由 108 5即可求得该多边形的内角和了.详解:该多边形的每一个内角都是108,该多边形的每一个外角的度数为:180-108=72,该多边形的边数为:360 72=5,该多边形的内角和为:108 5=540.故答案为:540.点睛:熟知“多边形的每个内角和相邻外角是互补的及多边形外角和为360”是解答本题的关键.11.若1mn,则2()22mnmn的值是 _.【答案】【解析】【分析】原式变形后,将m-n 的值代入计算即可求出值【详解】解:1mn,原式22123mnmn故答案为3【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键12.如图,AB、CD相交于点 O,试添加一个条件使得AOD COB,你添加的条件是_(只需写一个)【答案】A=C 或B=D 或OAODOCOB(答案不唯一)【解析】AOD=COB,A=C,AOD COB;或 AOD=COB,B=D,AOD COB;或 AOD=COB,OAODOCOB,AOD COB;综上可知答案不唯一,故答案为 A=C或B=D 或OAODOCOB(答案不唯一)13.已知21xy是方程组51axbybxay的解,则ab 的值是()A.1B.2C.3D.4【答案】D【解析】试题分析:根据方程组解的定义将21xy代入方程组,得到关于a,b 的方程组 两方程相减即可得出答案:21xy是方程组51axbybxay的解,2521abba.两个方程相减,得ab=4.故选 D考点:1.二元一次方程组的解;2.求代数式的值;3.整体思想的应用14.若关于 x的一元一次不等式组10,0 xxa无解,则a 的取值范围是_【答案】a1【解析】分析:先求出不等式组中每个不等式的解集,再根据“不等式组解集的确定方法”结合已知条件进行分析解答即可.详解:解不等式10 x得:1x;解不等式0 xa得:xa;不等式组100 xxa无解,1a.故答案为:1a.点睛:本题有两个解题要点:(1)熟练掌握解一元一次不等式的方法;(2)熟知不等式组解集的确定方法:“确定不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”.15.甲、乙、丙3 人从图书馆各借了一本书,他们相约在每个星期天相互交换读完的书经过数次交换后,他们都读完了这3本书若乙读的第三本书是丙读的第二本书,则乙读的第二本书是甲读的第_本书【答案】三【解析】分析:根据题意结合“乙读的第三本书是丙读的第二本书”进行分析解答即可.详解:设甲读的第一本书是a,乙读的第一本书是b,丙读的第一本书是c,乙读的第三本书是丙读的第二本书,丙读的第二本书是a,则乙读的第三本书是a,甲读的第二本书是b,乙读的第二本书是c,甲读的第三本书是c,即乙读的第二本书是甲读的第三本书.故答案为:三.点睛:读懂题意,并设“设甲读的第一本书是a,乙读的第一本书是b,丙读的第一本书是c”,这样由“乙读的第三本书是丙读的第二本书”得到“丙读的第二本书是a,乙读的第三本书是a,甲读的第二本书是b”是解答本题的关键.16.如图是 5 5 的正方形网格,ABC的顶点都在小正方形的顶点上,像ABC这样的三角形叫格点三角形画与 ABC有一条公共边且全等的格点三角形,这样的格点三角形最多可以画出_个【答案】6【解析】分析:如下图,分别以BC和AC为公共边画出与ABC全等的格点三角形,再进行判断即可.详解:如下图所示,以 BC 为公共边可画出三个格点三角形与ABC 全等,以 AB 边为公共边也可以画出三个格点三角形与 ABC 全等,在图中最多可以画出6 个符合题意的三角形.故答案为:6.点睛:“认真观察ABC在5 5正方形网格中的位置,并由此画出所有符合题意的三角形”是解答本题的关键.三、解答题(本大题共有10 小题,共 102分解答时应写出必要的步骤)17.(1)已知:2220110.3,b3,c(),d()33a();比较abcd、的大小,并用“”号连接起来(2)先化简,再求值:4x(x1)(2x+1)(2x1),其中 x=1【答案】(1)cdab(2)5【解析】分析:(1)根据“乘方的运算法则”结合“零指数幂和负整数指数幂的意义”计算出a、b、c、d 的值,再进行比较即可;(2)按整式乘法的相关运算法则和乘法公式先将原式化简,再代值计算即可.详解:(1)221(0.3)0.093919abcd,而1910.099,cdab;(2)原式=222244(41)444141xxxxxxx,当1x时,原式=4(1)15.点睛:(1)熟悉“零指数幂的意义:01?(0)aa”和“负整数指数幂的意义:1ppaa(0ap,为正整数)”是正确解答第1 小题的关键;(2)熟记“单项式乘以多项式的运算法则和乘法的平方差公式”是正确解答第2小题的关键.18.因式分解:(1)2126ab cab;(2)25(a+b)29(ab)2【答案】(1)6ab(2bc-1);(2)4(4a+b)(a+4b)【解析】分析:(1)根据本题特点,直接使用“提公因式法”分解即可;(2)根据本题特点,先用“平方差公式”分解,再提公因式即可.详解:(1)原式=6ab 2bc-6ab 1=6ab(2bc-1);(2)原式=5(a+b)2-3(a-b)2=(5a+5b+3a-3b)(5a+5b-3a+3b)=(8a+2b)(2a+8b)=4(4a+b)(a+4b).点睛:熟练掌握“综合提公因式法和公式法分解因式的方法”是解答本题的关键.19.解不等式:2192136xx,并把解集表示在数轴上【答案】x 2【解析】【试题分析】不等式的两边同时乘以6,去分母得:2(21)(92)6xx;去括号得:42926;xx移项得:510;x系数化为1得:2x解集在数轴上表示见解析.【试题解析】去分母得:2(21)(92)6xx;去括号得:42926;xx移项及合并得:510;x系数化为 1 得:不等式的解集为x 2,在数轴上表示如图所示:20.用两种方法证明“三角形的外角和等于360”已知:如图,BAE,CBF,ACD 是 ABC 的三个外角求证:BAECBF ACD360.证法 1:_,BAE1CBF2ACD3180 3540,BAECBF ACD540(1 23)_,BAECBF ACD540 180 360.请把证法 1 补充完整,并用不同的方法完成证法2.【答案】证法 1:平角等于180;1+2+3=180;证法二见解析【解析】试题分析:证法1:根据平角的定义得到BAE+1+CBF+2+ACD+3=540,再根据三角形内角和定理和角的和差关系即可得到结论;证法 2:要求证 BAE+CBF+ACD=360,根据三角形外角性质得到BAE=2+3,CBF=1+3,ACD=1+2,则 BAE+CBF+ACD=2(1+2+3),然后根据三角形内角和定理即可得到结论试题解析:证法1:平角等于180,BAE+1+CBF+2+ACD+3=180 3=540,BAE+CBF+ACD=540(1+2+3)1+2+3=180,BAE+CBF+ACD=540 180=360 证法2:BAE=2+3,CBF=1+3,ACD=1+2,BAE+CBF+ACD=2(1+2+3),1+2+3=180,BAE+CBF+ACD=360 21.(1)计算:222+nnnxxxx()()(n 为正整数).(2)观察下列各式:1 5+4=32,3 7+4=52,5 9+4=72,探索以上式子的规律,试写出第n 个等式,并说明第n 个等式成立【答案】(1)2x2n-xn+2;(2)见解析.【解析】分析:(1)根据“幂的相关运算法则”进行计算即可;(2)观察所给式子,根据其中的规律可得第n 个式子为:(2n-1)(2n+3)+4=(2n+1)2,然后将所得等式的两边分别化简即可得到等式左右两边是相等的结论.详解:(1)原式=x2n+x2n-xn+2=2x2n-xn+2;(2)观察所给式子可得:第 n 个等式为:(2n-1)(2n+3)+4=(2n+1)2,验证:在等式:(2n-1)(2n+3)+4=(2n+1)2中,左边=4n2+6n-2n-3+4=4n2+4n+1,右边=4n2+4n+1,左边=右边,等式(2n-1)(2n+3)+4=(2n+1)2成立.点睛:(1)熟记“幂的乘方和同底数幂相乘的运算法则”是解答第1 小题的关键;(2)认真观察、分析所给式子,得到第n个式子是:“(2n-1)(2n+3)+4=(2n+1)2”是解答第2 小题的关键.22.(1)将一批重490吨的货物分配给甲、乙两船运输现甲、乙两船已分别运走其任务数的57、37,在已运走的货物中,甲船比乙船多运30 吨求分配给甲、乙两船的任务数各多少吨?(2)自编一道应用题,要求如下:是路程应用题三个数据100,25,15必须全部用到,不添加其他数据只要编题,不必解答【答案】(1)分配给甲、乙两船的任务数分别是210 吨和 280 吨(2)见解析【解析】(1)设分配给甲、乙两船的任务数分别是x 吨、y 吨,则57x-37y=30,x+y=490,解二元一次方程组可得x=210,y=280,答:分配给甲、乙两船的任务数分别是210 吨、280 吨(2)参考:甲、乙两人相距100km,现甲、乙两人已分别走了其走过路程的25,15,在已走的路程中,甲比乙多走5km,分别求甲、乙两人的行驶路程23.(1)已知 3x+y=2,1y5,求 x 的取值范围(2)一个三角形的三边长分别是xcm、(x+2)cm、(x+4)cm,它的周长不超过39cm,求 x 的取值范围【答案】(1)-1x1;(2)2x11【解析】【分析】(1)由 3x+y=2 得到 y=2-3x,并将所得结果代入不等式组15y中得到关于x 的不等式组,解此不等式组即可求得x 的取值范围;(2)根据题意和三角形三边间的关系列出关于x 的不等式组242439xxxxxx进行解答即可.【详解】(1)3x+y=2,y=2-3x,-1y5,-12-3x5,解得:-1x1;(2)由题意可得:242439xxxxxx,解此不等式组得:2x11,x 的取值范围是:2x11.【点睛】本题考查了三角形三边的关系,不等式组的应用,弄清题意,找准不等关系列出不等式组是解题的关键.24.画 A,在 A 的两边上分别取点B、C,在 A 的内部取一点P,连接 PB、PC探索 BPC 与A、ABP、ACP 之间的数量关系,并证明你的结论【答案】见解析.【解析】分析:根据题意画出符合要求的图形,共存在下列三种情况,分别如图1、图 2 和图 3,根据三种图形结合已知条件进行分析解答即可.详解:由题意画出符合要求的图形,共存在三种情况如下图所示:(1)如图 1,当点 B、P、C 三点共线时,BPC=180 ,在 ABC 中,A ABP ACP180,BPC=A ABP ACP=180;(2)如图 2,四边形的内角和是360,BPC+A ABP ACP=360 ,即 BPC=360 -A-ABP-ACP;(3)如图 3,延长 CP 交 AB 于 D,BPC=ABP+PDB,PDB=A+ACP BPC=A ABP ACP.综上所述,BPC 与A、ABP、ACP 之间的数量关系存在以下三种情况:BPC=A ABP ACP=180;BPC=360-A-ABP-ACP;BPC=A ABP ACP.点睛:读懂题意,能分三种情况画出相应的图形是解答本题的关键.25.某电器超市根据市场需求,计划采购A、B 两种型号的电风扇共40 台该超市准备采购这两种电风扇的金额不少于9000 元,但不超过9100元,且所采购的这两种电风扇可以全部销售完,现已知 A、B 两种型号的电风扇的进价和售价如下表:型号A B 进价(元/台)200 250 售价(元/台)240 300(1)该电器超市这两种型号的电风扇有哪几种采购方案?(2)该电器超市如何采购能获得最大利润?(3)据市场调查,每台A 型电风扇的售价将会提高a万元(a 0),每台 B 型电风扇售价不会改变,该电器超市应该如何采购才可以获得最大利润?(注:利润=售价进价)【答案】(1)共有如下三种方案:购买 A 型电风扇18 台、B 型电风扇22 台;购买 A 型电风扇 19 台、B 型电风扇21 台;购买 A 型电风扇 20 台、B 型电风扇20台;(2)当购买 A 型电风扇18 台、B 型电风扇 22 台时,所获利润最大;(3)见解析.【解析】分析:(1)设购进 A 型号电风扇x 台,购进 B 型号电风扇(40-x)台,根据“采购这两种电风扇的金额不少于9000元,但不超过9100 元”列出不等式组,解不等式组求得x 的整数解即可得到所求方案;(2)根据(1)中所得方案结合已知条件求出每种方案所获取的利润,进行比较即可得到所求答案;(3)设 A 型号电风扇涨价后所获总利润为w,结合已知条件可得:w=(40+a)x+50(40-x),将所得式子化简整理,再根据一次函数的性质进行解答即可.详解:设该电器超市采购A、B 两种型号的电风扇的台数分别为x 台、(40-x)台,(1)根据题意得9000200 x+250(40-x)9100,解得 18x20,x 为正整数,x=18 或 19 或 20,40-x=22 或 21 或 20,该电器超市共有3 种采购方案:购买 A 型电风扇18 台、B 型电风扇22 台;购买 A 型电风扇19 台、B 型电风扇21 台;购买 A 型电风扇20 台、B 型电风扇20 台;(2)方案 的利润=4018+50 22=720+1100=1820(元);方案 的利润=40 19+5021=760+1050=1810(元);方案 的利润=40 20+5020=800+1000=1800(元);能获得最大利润的购买方案是方案:购买 A 型电风扇18 台、B 型电风扇22 台(3)设 A 型号电风扇涨价后所获总利润为w 元,根据题意可得:w=(40+a)x+50(40-x)=40 x+ax+2000-50 x=(a-10)x+2000,当 0a10 时,a-1010 时,a-100,x 越大,利润越大,能获得最大利润的购买方案是方案:购买 A 型电风扇20台、B 型电风扇 20 台.点睛:(1)读懂题意,设购进 A 型号电风扇x 台,结合已知条件列出不等式组:9000200 x+250(40-x)9100是解答第 1 小题的关键;(2)“设 A 型号电风扇涨价后所获总利润为w 元,并由题意得到w=(40+a)x+50(40-x)=40 x+ax+2000-50 x=(a-10)x+2000,且熟悉一次函数的性质”是解答第3 小题的关键.26.画 AOB=090,并画 AOB 的平分线OC(1)将一块足够大的三角尺的直角顶点落在射线OC 的任意一点P上,并使三角尺的一条直角边与OA 垂直,垂足为点E,另一条直角边与OB 交于点 F(如图 1)证明:PE=PF;(2)把三角尺绕点P旋转,三角尺的两条直角边分别交OA、OB 于点 E、F(如图 2),PE与 PF 相等吗?请直接写出结论:PE PF(填,=);(3)若点 E 在 OA 的反向延长线上,其他条件不变(如图2),PE与 PF相等吗?若相等请进行证明,若不相等请说明理由图 1 图 2 图 3【答案】(1)证明见解析;(2)=;(3)PE与 PF相等,证明见解析.【解析】分析:(1)由已知条件易得AOC=BOC,OEP=90,结合 AOB=90 ,EPF=90 可得OFP=360-AOB-PEO-EPF=90,从而可得 OEP=OFP,这样即可证得OEP OFP(AAS),由此可得 PE=PF;(2)如图 4,过点 P作 PMOA 于点 M,PNOB 于点 N,这样结合已知条件证得PEM PFN 即可得到 PE=PF;(3)如图 5,过点 P 作 PGOA 于点 G,PHOB 于点 H,这样结合已知条件证得PGE PHF 即可得到 PE=PF.详解:(1)OC 平分 AOB,AOC=BOC,PEOA,OEP=90,AOB=90 ,EPF=90,OFP=360-AOB-PEO-EPF=90,OEP=OFP,又 AOC=BOC,OP=OP,OEP OFP(AAS),PE=PF;(2)PE=PF,理由如下:如图 4,过点 P作 PMOA 于点 M,PNOB 于点 N,PMO=PNO=90 ,MPN=360 -AOB-PMO-PNO=90 ,又 EPF=90,MPE+EPN=NPF+EPN=90 ,MPE=NPF,OC 平分 AOB,点 P在 OC 上,PM OA 于点 M,PNOB 于点 N,PM=PN,PEM PFN,PE=PF;(3)PE与 PF相等,理由如下:如图 5,过点 P作 PGOA 于点 G,PHOB 于点 H,PGOA,PHOB,PGO=PHO=90 ,又 AOB=90 ,GPH=360 -AOB-PGO-PHO=90 GPE+EPH=HPF+EPH=90,GPE=HPF,OC 平分 AOB,点 P在 OC 上,PGOA,PHOB,PG=PH,PGE PHF(ASA),PE=PF.点睛:这是一道考查“角平分线性质”和“全等三角形的判定与性质”的题目,作出如图所示的辅助线,熟记“角平分线上的点到角两边的距离相等和全等三角形的判定与性质”是正确解答本题的关键.