人教版高中数学第一轮总复习 第10章第61讲柱、锥、台、球的表面积与体积课件 理 新课标.ppt
-
资源ID:78688152
资源大小:460KB
全文页数:36页
- 资源格式: PPT
下载积分:20金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
人教版高中数学第一轮总复习 第10章第61讲柱、锥、台、球的表面积与体积课件 理 新课标.ppt
第十章第十章立体几何几何初步2021/8/9 星期一1柱、柱、锥、台、球的表面、台、球的表面积与体与体积第第6161讲讲2021/8/9 星期一22021/8/9 星期一32021/8/9 星期一42021/8/9 星期一52021/8/9 星期一62021/8/9 星期一7几何体的表面积几何体的表面积【例1】斜三棱柱ABCA1B1C1的底面是边长等于a的正三角形,侧棱长等于b.一条侧棱AA1和底面相邻的两条边AB,AC都成45角,求这个斜三棱柱的侧面积 2021/8/9 星期一8【解析】如图,由于侧棱AA1和底面相邻的两条边AB,AC都成45角,所以点A1在底面ABC内的射影O在BAC的平分线AD上由于底面ABC是正三角形,所以BCAD,即BCAO.2021/8/9 星期一92021/8/9 星期一10点评 由于给出的棱柱不是正棱柱,所以在求侧面积时,应对每一个侧面的面积分别进 行 计 算 本 题 的 关 键 是 判 断 侧 面BB1C1C的形状,其中应用了非常重要的结论:从角的顶点出发的一条射线,如果它和角的两边所成的角相等,那么这条射线在角所在平面内的射影在角的平分线上(自己证明)2021/8/9 星期一11【变式练习1】在三棱柱ABCA1B1C1中,底面是边长为a的正三角形,且AA1与AC,AB所成的角均为60,且A1AAB,求该三棱柱的侧面积 2021/8/9 星期一122021/8/9 星期一13几何体的体积几何体的体积【例2】如图,边长为4的正方形ABCD所在平面与正PAD所在平面互相垂直,Q是AD的中点求三棱锥CPBD的体积 2021/8/9 星期一142021/8/9 星期一15点评 若用直接法求三棱锥CPBD的体积,就必须求C到平面PBD的距离,显然这是比较困难的一般来讲,当直接法求距离(高)遇到较大阻力时,往往可以轮换三棱锥中的顶点,将底面和高转化为题目已知或容易求解的问题,这是解决求高或体积问题时常用的思路 2021/8/9 星期一16【变式练习2】将棱长为1的正方体ABCDA1B1C1D1中截去一角B1A1BC1,求三棱锥B1A1BC1的体积,并求三棱锥B1A1BC1的高 2021/8/9 星期一172021/8/9 星期一18空间几何体的内接、空间几何体的内接、内切、外接问题内切、外接问题【例3】如图,已知一个圆锥的底面半径为R,高为H,在其中有一个高为x的内接圆柱(1)求圆柱的侧面积;(2)当x为何值时,圆柱的侧面积最大?2021/8/9 星期一192021/8/9 星期一20点评 圆锥的内接问题,一般都要借助于三角形的相似找到变量之间的比例关系,将未知的变量转化为已知变量来解决圆柱、圆锥的表面积和体积求解的关键是求出底面半径、母线长和高,再准确运用公式进行计算而求最大、最小值的问题,往往都是转化为某个变量的函数,再运用相关函数的图象和性质求解即可 2021/8/9 星期一21【变式练习3】求棱长为1的正四面体的外接球的半径R.2021/8/9 星期一222021/8/9 星期一232021/8/9 星期一242021/8/9 星期一25122021/8/9 星期一262.将边长为a的正方形ABCD沿着对角线AC折起,使BDa,则VDABC _2021/8/9 星期一272021/8/9 星期一282021/8/9 星期一292021/8/9 星期一302021/8/9 星期一315.设圆锥底面圆周上两点A、B间的距离为2,圆锥顶点到直线AB的距离为,AB和圆锥的轴之间的距离为1,求该圆锥的体积 2021/8/9 星期一322021/8/9 星期一33 1熟练掌握各种几何体的结构特征是求几何体的侧面积和体积的前提条件,特别是正棱柱和正棱锥的结构特征求多面体的侧面积的关键是将侧面沿着一条棱剪开,展成一个平面图形,弄清楚各个侧面的形状,然后将各个侧面的面积相加即得所求侧面积注意侧面积与表面积的区别,表面积是在侧面积的基础上加上底面面积 2021/8/9 星期一34 2了解柱、锥、台、球的表面积和体积的计算公式(不要求记忆公式),注意公式间的联系与区别与圆柱、圆锥、球有关的组合体问题,主要是指内接和外切,解题时要认真研究轴截面、分析平面图,借助相似成比例或直角三角形中的勾股定理找到变量之间的联系 2021/8/9 星期一35 3计算底面积和高都不易求的不规则几何体的体积时应尽量避免直接求解,要养成用“等积法”和“割补法”转化成规则几何体的习惯 2021/8/9 星期一36