欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    数学综合题专题.doc

    • 资源ID:78710817       资源大小:2.76MB        全文页数:51页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    数学综合题专题.doc

    备战2008中考专题数学综合题专题一、 知识网络梳理数学综合题是初中数学中覆盖面最广、综合性最强的题型近几年的中考压轴题多以数学综合题的形式出现解数学综合题一般可分为认真审题、理解题意,探求解题思路,正确解答三个步骤解数学综合题必须要有科学的分析问题的方法数学思想是解数学综合题的灵魂,要善于总结解数学综合题中所隐含的重要的转化思想、数形结合思想、分类讨论的思想、方程的思想等,要结合实际问题加以领会与掌握,这是学习解综合题的关键题型1方程型综合题这类题是中考试题中常见的中档题,主要以一元二次方程根的判别式、根与系数的关系为背景,结合代数式的恒等变形、解方程(组)、解不等式(组)、函数等知识其基本形式有:求代数式的值、求参数的值或取值范围、与方程有关的代数式的证明题型2函数型综合题函数型综合题主要有:几何与函数相结合型、坐标与几何方程与函数相结合型综合问题,历来是各地中考试题中的热点题型主要是以函数为主线,建立函数的图象及性质、方程的有关理论的综合解题时要注意函数的图象信息与方程的代数信息的相互转化例如函数图象与x轴交点的横坐标即为相应方程的根;点在函数图象上即点的坐标满足函数的解析式等函数是初中数学的重点,也是难点,更是中考命题的主要考查对象,由于这类题型能较好地考查学生的函数思想、数形结合思想、分类讨论思想、转化思想,能较全面地反映学生的综合能力和较好的区分度,因此是各地中考的热点题型,压轴题的主要来源,并且长盛不衰,年年有新花样题型3几何型综合题几何综合题考查知识点多、条件隐晦,要求学生有较强的理解能力,分析能力,解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识与创新能力1 几何型综合题,常用相似形与圆的知识为考查重点,并贯穿其他几何、代数、三角等知识,以证明、计算等题型出现2 几何计算是以几何推理为基础的几何量的计算,主要有线段和弧的长度的计算,角、角的三角函数值的计算,以及各种图形面积的计算等3 几何论证题主要考查学生综合应用所学几何知识的能力4 解几何综合题应注意以下几点:(1) 注意数形结合,多角度、全方位观察图形,挖掘隐含条件,寻找数量关系和相等关系(2) 注意推理和计算相结合,力求解题过程的规范化(3) 注意掌握常规的证题思路,常规的辅助线添法(4) 注意灵活地运用数学的思想和方法 解决几何型综合题的关键是把代数知识与几何图形的性质以及计算与证明有机融合起来,进行分析、推理,从而达到解决问题的目的二、 知识运用举例例1(05安徽省六安市)已知关的一元二次方程 有实数根(1)求的取值范围(2)若两实数根分别为和,且求的值分析与解答 本题目主要综合考查一元二次方程根的判别式、根与系数的关系的应用以及代数式的恒等变形等(1)由题意,0,即0解得(2)由根与系数的关系,得例2(05北京市)已知关于的方程有两个不相等的实数根和,并且抛物线与轴的两个交点分别位于点(2,0)的两旁(1) 求实数的取值范围(2) 当时,求的值分析与解答 本例以一元二次方程为背影,综合考查一元二次方程桶的判别式、桶与系数关系、分式方程的解法以及二次函数的有性质等 (1)一方面,关于的方程有两个不相等的实数根,解之,得另一方面,抛物线与轴的两个交点分别位于点(2,0)的两旁,且开口向上,当时,即,解得综合以上两面,的取值范围是 (2)、是关于的方程的两个不相等的实数根,即,解得经检验,都是方程的根舍去,说明 运用一元二次方程根的差别式时,要注意二次项系数不为零,运用一元二次方程根与系数的关系时,要注意根存在的前提,即要保证0例3(05重庆市) 如图2418,O是AB上的一点,以O为圆心,OB为半径的圆与AB交于点E,与AC切于点D若AD,且AB、AE的长是关于的方程的两个实数根(1)求O的半径(2)求CD的长分析与解答 本题是一道方程与几何相结合的造型题,综合考查了切割线定理、根与系数的关系、一元二次方程的解法、勾股定理知识(1)AD是O的切线,又,AE、AB的长是方程的两个实数根,把代入方程,解得AE2,AB6O的半径为(2)CBAB,AB经过圆心O,CB切O于点B,CDCB在RtABC中,设,由勾股定理得,解得例4(2007四川绵阳)已知x1,x2 是关于x的方程(x2)(xm)(p2)(pm)的两个实数根(1)求x1,x2 的值;(2)若x1,x2 是某直角三角形的两直角边的长,问当实数m,p满足什么条件时,此直角三角形的面积最大?并求出其最大值解:(1) 原方程变为:x2(m 2)x 2m p2(m 2)p 2m, x2p2(m 2)x (m 2)p 0,(xp)(x p)(m 2)(xp) 0,即 (xp)(x pm2) 0, x1 p, x2 m 2p(2) 直角三角形的面积为, 当且m2时,以x1,x2为两直角边长的直角三角形的面积最大,最大面积为或例5(07茂名市)已知函数的图象与轴的两交点的横坐标分别是,且,求c及,的值解:令,即,当方程有两个不相等的实数根时,该函数的图象与x轴有两个交点 相关链接 :若是一元二次方程的两根,则此时即由已知,(舍去)当时,解得综上:,为所求例6(07天津市) 已知关于x的一元二次方程有两个实数根,且满足,(1)试证明;(2)证明;(3)对于二次函数,若自变量取值为,其对应的函数值为,则当时,试比较与的大小解:(1)将已知的一元二次方程化为一般形式即 是该方程的两个实数根 ,而 (2) 于是,即 (3)当时,有 , 又 , 于是 由于, ,即 当时,有例7(05贵阳市)如图2420,二次函数的图象与轴交于A、B两点,与轴交于点C,点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D(1)求D点的坐标(2)求一次函数的解析式(3)根据图象写出使一次函数值大于二次函数的值的的取值范围分析与解答 (1)由图2420可得C(0,3)抛物线是轴对称图形,且抛物线与轴的两个交点为A(3,0)、B(1,0),抛物线的对称轴为,D点的坐标为(2,3)(2)设一次函数的解析式为,将点D(2,3)、B(1,0)代入解析式,可得,解得一次函数的解析式为(3)当时,一次函数的值大于二次函数的值说明:本例是一道纯函数知识的综合题,主要考查了二次函的对称性、对称点坐标的求法、一次函数解析式的求法以及数形结合思想的运用等例8(05吉林省) 如图2421,二次函数的图象与轴交于A、B两点,其中A点坐标为(1,0),点C(0,5)、D(1,8)在抛物线上,M为抛物线的顶点(1)求抛物线的解析式(2)求MCB的面积分析与解答 第(1)问,已知抛物线上三个点的坐标,利用待定系数法可求出其解析式第(20问,MCB不是一个特殊三角形,我们可利用面积分割的方法转化成特殊的面积求解(1)设抛物线的解析式为,根据题意,得,解之,得所求抛物线的解析式为(2)C点的坐标为(0,5)OC5令,则,解得B点坐标为(5,0)OB5,顶点M坐标为(2,9)过点M用MNAB于点N,则ON2,MN9说明:以面积为纽带,以函数图象为背景,结合常见的平面几何图形而产生的函数图象与图形面积相结合型综合题是中考命题的热点解决这类问题的关键是把相关线段的长与恰当的点的坐标联系起来,必要时要会灵活将待求图形的面积进行分割,转化为特殊几何图形的面积求解例9(05湖南省娄底市)已知抛物线与轴交于、,与轴交于点C,且、满足条件(1)求抛物线的解析式;(2)能否找到直线与抛物线交于P、Q两点,使轴恰好平分CPQ的面积?求出、所满足的条件 分析与解答 (1),对一切实数,抛物线与轴恒有两个交点,由根与系数的关系得,由已知有,得由得化简,得解得,满足当时,不满足,抛物线的解析式为(2)如图2422,设存在直线与抛物线交于点P、Q,使轴平分CPQ的面积,设点P的横坐标为,直线与轴交于点E,由轴平分CPQ的面积得点P、Q在轴的两侧,即,由得又、是方程的两根,又直线与抛物线有两个交点,当时,直线与抛物线的交点P、Q,使轴能平分CPQ的面积故说明 本题是一道方程与函数、几何相结合的综合题,这类题主要是以函数为主线解题时要注意运用数形结合思想,将图象信息与方程的代信息相互转化例如:二次函数与轴有交点可转化为一元二次旗号有实数根,并且其交点的横坐标就是相应一元二次方程的解点在函数图象上,点的坐标就满足该函数解析式等例10(05桂林市) 已知:如图2423,抛物线经过原点(0,0)和A(1,5)(1)求抛物线的解析式(2)设抛物线与轴的另一个交点为C以OC为直径作M,如果过抛物线上一点P作M的切线PD,切点为D,且与轴的正半轴交于点为E,连结MD已知点E的坐标为(0,),求四边形EOMD的面积(用含的代数式表示)(3)延长DM交M于点N,连结ON、OD,当点P在(2)的条件下运动到什么位置时,能使得?请求出此时点P的坐标分析与解答 (1)抛物线过O(0,0)、A(1,3)、B(1,5)三点,解得,抛物线的解析式为(2)抛物线与轴的另一个交点坐标为C(4,0),连结EMM的半径是2,即OMDM2ED、EO都是的切线,EOEDEOMEDM(3)设D点的坐标为(,),则当时,即,故ED轴,又ED为切线,D点的坐标为(2,3),点P在直线ED上,故设点P的坐标为(,2),又P在抛物线上,或为所求图9例11(07上海市)如图9,在直角坐标平面内,函数(,是常数)的图象经过,其中过点作轴垂线,垂足为,过点作轴垂线,垂足为,连结,(1)若的面积为4,求点的坐标;(2)求证:;(3)当时,求直线的函数解析式(1) 解:函数,是常数)图象经过,设交于点,据题意,可得点的坐标为,点的坐标为,点的坐标为,由的面积为4,即,得,点的坐标为(2)证明:据题意,点的坐标为,易得,(3)解:,当时,有两种情况:当时,四边形是平行四边形,由(2)得,得点的坐标是(2,2)设直线的函数解析式为,把点的坐标代入,得解得直线的函数解析式是当与所在直线不平行时,四边形是等腰梯形,则,点的坐标是(4,1)设直线的函数解析式为,把点的坐标代入,得解得直线的函数解析式是综上所述,所求直线的函数解析式是或例12(07资阳)如图10,已知抛物线P:yax2bxc(a0) 与x轴交于A、B两点(点A在x轴的正半轴上),与y轴交于点C,矩形DEFG的一条边DE在线段AB上,顶点F、G分别在线段BC、AC上,抛物线P上部分点的横坐标对应的纵坐标如下:x3212y40图10(1) 求A、B、C三点的坐标;(2) 若点D的坐标为(m,0),矩形DEFG的面积为S,求S与m的函数关系,并指出m的取值范围;(3) 当矩形DEFG的面积S取最大值时,连接DF并延长至点M,使FMk·DF,若点M不在抛物线P上,求k的取值范围若因为时间不够等方面的原因,经过探索、思考仍无法圆满解答本题,请不要轻易放弃,试试将上述(2)、(3)小题换为下列问题解答(已知条件及第(1)小题与上相同,完全正确解答只能得到5分):(2) 若点D的坐标为(1,0),求矩形DEFG的面积解: 解法一:设,任取x,y的三组值代入,求出解析式,令y0,求出;令x0,得y4, A、B、C三点的坐标分别是A(2,0),B(4,0),C(0,4) 解法二:由抛物线P过点(1,),(3,)可知,抛物线P的对称轴方程为x1,又 抛物线P过(2,0)、(2,4),则由抛物线的对称性可知,点A、B、C的坐标分别为 A(2,0),B(4,0),C(0,4) 由题意,而AO2,OC4,AD2m,故DG42m,又 ,EFDG,得BE42m, DE3m,SDEFGDG·DE(42m) 3m12m6m2 (0m2) SDEFG12m6m2 (0m2),m1时,矩形的面积最大,且最大面积是6 当矩形面积最大时,其顶点为D(1,0),G(1,2),F(2,2),E(2,0),设直线DF的解析式为ykxb,易知,k,b,又可求得抛物线P的解析式为:,令,可求出x. 设射线DF与抛物线P相交于点N,则N的横坐标为,过N作x轴的垂线交x轴于H,有,点M不在抛物线P上,即点M不与N重合时,此时k的取值范围是k且k0若选择另一问题: ,而AD1,AO2,OC4,则DG2,又, 而AB6,CP2,OC4,则FG3,SDEFGDG·FG6例13(07北京市)我们知道:有两条边相等的三角形叫做等腰三角形类似地,我们定义:至少有一组对边相等的四边形叫做等对边四边形(1)请写出一个你学过的特殊四边形中是等对边四边形的图形的名称;(2)如图,在中,点分别在上,设相交于点,若,请你写出图中一个与相等的角,并猜想图中哪个四边形是等对边四边形;(3)在中,如果是不等于的锐角,点分别在上,且探究:满足上述条件的图形中是否存在等对边四边形,并证明你的结论解:(1)回答正确的给1分(如平行四边形、等腰梯形等)(2)答:与相等的角是(或)四边形是等对边四边形(3)答:此时存在等对边四边形,是四边形证法一:如图1,作于点,作交延长线于点图1因为,为公共边,所以所以因为,所以可证所以所以四边形是等边四边形证法二:如图2,以为顶点作,交于点图2因为,为公共边,所以所以,所以因为,所以所以所以所以所以四边形是等边四边形说明:当时,仍成立只有此证法,只给1分例14(07宁波市)四边形一条对角线所在直线上的点,如果到这条对角线的两端点的距离不相等,但到另一对角线的两个端点的距离相等,则称这点为这个四边形的准等距点如图l,点P为四边形ABCD对角线AC所在直线上的一点,PDPB,PAPC,则点P为四边形ABCD的准等距点(1)如图2,画出菱形ABCD的一个准等距点(2)如图3,作出四边形ABCD的一个准等距点(尺规作图,保留作图痕迹,不要求写作法)(3)如图4,在四边形ABCD中,P是AC上的点,PAPC,延长BP交CD于点E,延长DP交BC于点F,且CDFCBE,CECF求证:点P是四边形AB CD的准等距点(4)试研究四边形的准等距点个数的情况(说出相应四边形的特征及准等距点的个数,不必证明)解:(1)如图2,点P即为所画点(答案不唯一点P不能画在AC中点) (2)如图3,点P即为所作点(答案不唯一) (3)连结DB, 在DCF与BCE中, DCFBCE, CDFCBE, CFCE DCFBCE(AAS), CDCB, CDBCBD PDBPBD, PDPB, PAPC 点P是四边形ABCD的准等距点(4)当四边形的对角线互相垂直且任何一条对角线不平分另一对角线或者对角线互相平分且不垂直时,准等距点的个数为0个;当四边形的对角线不互相垂直,又不互相平分,且有一条对角线的中垂线经过另一对角线的中点时,准等距点的个数为1个;当四边形的对角线既不互相垂直又不互相平分,且任何一条对角线的中垂线都不经过另一条对角线的中点时,准等距点的个数为2个;四边形的对角线互相垂直且至少有一条对角线平分另一对角线时,准等距点有无数个例15(07南充市) 如图,点M(4,0),以点M为圆心、2为半径的圆与x轴交于点A、B已知抛物线过点A和B,与y轴交于点C(1)求点C的坐标,并画出抛物线的大致图象(2)点Q(8,m)在抛物线上,点P为此抛物线对称轴上一个动点,求PQPB的最小值(3)CE是过点C的M的切线,点E是切点,求OE所在直线的解析式CAMBxyODE解:(1)由已知,得A(2,0),B(6,0),抛物线过点A和B,则解得则抛物线的解析式为 故C(0,2)(说明:抛物线的大致图象要过点A、B、C,其开口方向、顶点和对称轴相对准确)(2)如图,抛物线对称轴l是x4Q(8,m)抛物线上,m2过点Q作QKx轴于点K,则K(8,0),QK2,AK6,AQ又B(6,0)与A(2,0)关于对称轴l对称,PQPB的最小值AQCAMBxyODEQPK图lCAMBxyODE图(3)如图,连结EM和CM由已知,得EMOC2CE是M的切线,DEM90º,则DEMDOC又ODCEDM故DEMDOCODDE,CDMD又在ODE和MDC中,ODEMDC,DOEDEODCMDMC则OECM设CM所在直线的解析式为ykxb,CM过点C(0,2),M(4,0),解得直线CM的解析式为又直线OE过原点O,且OECM,则OE的解析式为yx例16(07宿迁市) 如图,圆在正方形的内部沿着正方形的四条边运动一周,并且始终保持与正方形的边相切 (1)在图中,把圆运动一周覆盖正方形的区域用阴影表示出来;(2)当圆的直径等于正方形的边长一半时,该圆运动一周覆盖正方形的区域的面积是否最大?并说明理由解:圆运动一周覆盖正方形的区域用阴影表示如下: 圆的直径等于正方形的边长一半时,覆盖区域的面积不是最大.理由如下: 设正方形的边长为a,圆的半径为r 覆盖区域的面积为S 圆在正方形的内部,0r 由图可知:Sa2(a4r)24r2r2 a2(20)r28ara2 (20) r28ar (20)(r)2 0 当r 时,S有最大值 圆的直径等于正方形的边长一半时,面积不是最大三、 知识巩固举例1(05湖北省荆门市)已知关于的方程的两根是一矩形两邻边的长(1)取何值时,方程有两个实数根?(2)当矩形的对角线长为时,求的值2(04四川省)已知关于的方程的两个不相等的实数根中有一个根为0,是否存在实数,使关于的方程的两个实数根、之差的绝对值为1?若存在,求出的值;若不存在,请说明理由3(04黑龙江省)已知方程组有两个不相等的实数解(1)求有取值范围(2)若方程组的两个实数解为和是否存在实数,使?若存在,求出的值;若不存在,请说明理由4(04重庆市万州区)如图2419,以ABC的直角边AB为直径的半圆O与斜边AC交于点D,E是BC边的中点,连结DE(1)DE与半圆O相切吗?若不相切,请说明理由(2)若AD、AB的长是方程的个根,求直角边BC的长5(06浙江舟山)如图1,在直角坐标系中,点A的坐标为(1,0),以OA为边在第四象限内作等边AOB,点C为x轴的正半轴上一动点(OC1),连结BC,以BC为边在第四象限内作等边CBD,直线DA交y轴于点E(1)试问OBC与ABD全等吗?并证明你的结论(2)随着点C位置的变化,点E的位置是否会发生变化,若没有变化,求出点E的坐标;若有变化,请说明理由(3)如图2,以OC为直径作圆,与直线DE分别交于点F、G,设ACm,AFn,用含n的代数式表示m6(06浙江金华)如图,平面直角坐标系中,直线AB与轴,轴分别交于A(3,0),B(0,)两点, ,点C为线段AB上的一动点,过点C作CD轴于点D(1)求直线AB的解析式;(2)若S梯形OBCD,求点C的坐标;(3)在第一象限内是否存在点P,使得以P,O,B为顶点的三角形与OBA相似.若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由7(06湖南常德)如图,在直角坐标系中,以点为圆心,以为半径的圆与轴相交于点,与轴相交于点(1)若抛物线经过两点,求抛物线的解析式,并判断点是否在该抛物线上(2)在(1)中的抛物线的对称轴上求一点,使得的周长最小(3)设为(1)中的抛物线的对称轴上的一点,在抛物线上是否存在这样的点,使得四边形是平行四边形若存在,求出点的坐标;若不存在,说明理由8(06湖南常德)把两块全等的直角三角形和叠放在一起,使三角板的锐角顶点与三角板的斜边中点重合,其中,把三角板固定不动,让三角板绕点旋转,设射线与射线相交于点,射线与线段相交于点(1)如图9,当射线经过点,即点与点重合时,易证此时,_(2)将三角板由图1所示的位置绕点沿逆时针方向旋转,设旋转角为其中,问的值是否改变?说明你的理由()()()B(Q)CFEAP图1图3图3(3)在(2)的条件下,设,两块三角板重叠面积为,求与的函数关系式9(06湖北宜昌)如图,点O是坐标原点,点A(n,0)是x轴上一动点(n0)以AO为一边作矩形AOBC,点C在第二象限,且OB2OA矩形AOBC绕点A逆时针旋转90o得矩形AGDE过点A的直线ykxm 交y轴于点F,FBFA抛物线yax2bxc过点E、F、G且和直线AF交于点H,过点H作HMx轴,垂足为点M(1)求k的值;(2)点A位置改变时,AMH的面积和矩形AOBC 的面积的比值是否改变?说明你的理由10.(07安徽省)按右图所示的流程,输入一个数据x,根据y与x的关系式就输出一个数据y,这样可以将一组数据变换成另一组新的数据,要使任意一组都在20100(含20和100)之间的数据,变换成一组新数据后能满足下列两个要求:()新数据都在60100(含60和100)之间;()新数据之间的大小关系与原数据之间的大小关系一致,即原数据大的对应的新数据也较大(1)若y与x的关系是yxp(100x),请说明:当p时,这种变换满足上述两个要求;【解】(2)若按关系式ya(xh)2k(a0)将数据进行变换,请写出一个满足上述要求的这种关系式(不要求对关系式符合题意作说明,但要写出关系式得出的主要过程)【解】11(07郴州市)如图,矩形ABCD中,AB3,BC4,将矩形ABCD沿对角线AC平移,平移后的矩形为EFGH(A、E、C、G始终在同一条直线上),当点E与C重合时停止移动平移中EF与BC交于点N,GH与BC的延长线交于点M,EH与DC交于点P,FG与DC的延长线交于点Q设S表示矩形PCMH的面积,表示矩形NFQC的面积(1) S与相等吗?请说明理由(2)设AEx,写出S和x之间的函数关系式,并求出x取何值时S有最大值,最大值是多少?(3)如图11,连结BE,当AE为何值时,是等腰三角形图11图10图1412(07德州市)已知:如图14,在中,为边上一点,(1)试说明:和都是等腰三角形;(2)若,求的值;(3)请你构造一个等腰梯形,使得该梯形连同它的两条对角线得到8个等腰三角形(标明各角的度数)13(07龙岩市)如图,抛物线经过的三个顶点,已知轴,点在轴上,点在轴上,且(1)求抛物线的对称轴;(2)写出三点的坐标并求抛物线的解析式;(3)探究:若点是抛物线对称轴上且在轴下方的动点,是否存在是等腰三角形若存在,求出所有符合条件的点坐标;不存在,请说明理由ACByx01114(07年福建省宁德市)已知:矩形纸片中,厘米,厘米,点在上,且厘米,点是边上一动点按如下操作:步骤一,折叠纸片,使点与点重合,展开纸片得折痕(如图1所示);步骤二,过点作,交所在的直线于点,连接(如图2所示)(1)无论点在边上任何位置,都有_(填“”、“”、“”号);(2)如图3所示,将纸片放在直角坐标系中,按上述步骤一、二进行操作:当点在点时,与交于点点的坐标是(_,_);当厘米时,与交于点点的坐标是(_,_);当厘米时,在图3中画出(不要求写画法),并求出与的交点的坐标;(3)点在运动过程,与形成一系列的交点观察、猜想:众多的交点形成的图象是什么?并直接写出该图象的函数表达式APBCMD(P)EBC图10(A)BCDE6121824xy61218图3ANPBCMDEQT图215(07年福建省三明市)如图,在平面直角坐标系中,点的坐标为(4,0),以点为圆心,4为半径的圆与轴交于,两点,为弦,是轴上的一动点,连结(1)求的度数;(2分)(2)如图,当与相切时,求的长;(3分)(3)如图,当点在直径上时,的延长线与相交于点,问为何值时,是等腰三角形?(7分)16(07年河池市)如图12, 四边形OABC为直角梯形,A(4,0),B(3,4),C(0,4) 点从出发以每秒2个单位长度的速度向运动;点从同时出发,以每秒1个单位长度的速度向运动其中一个动点到达终点时,另一个动点也随之停止运动过点作垂直轴于点,连结AC交NP于Q,连结MQ(1)点_(填M或N)能到达终点;(2)求AQM的面积S与运动时间t的函数关系式,并写出自变量t的取值范围,当t为何值时,S的值最大;(3)是否存在点M,使得AQM为直角三角形?若存在,求出点M的坐标,若不存在,说明理由图1217(07贵阳市)如图14,从一个直径是2的圆形铁皮中剪下一个圆心角为的扇形(1)求这个扇形的面积(结果保留)(3分)(2)在剩下的三块余料中,能否从第块余料中剪出一个圆作为底面与此扇形围成一个圆锥?请说明理由(4分)图14(3)当的半径为任意值时,(2)中的结论是否仍然成立?请说明理由(5分)(图1)(图1)(图1)(图1)18(07河北省)如图16,在等腰梯形ABCD中,ADBC,ABDC50,AD75,BC135点P从点B出发沿折线段BAADDC以每秒5个单位长的速度向点C匀速运动;点Q从点C出发沿线段CB方向以每秒3个单位长的速度匀速运动,过点Q向上作射线QKBC,交折线段CDDAAB于点E点P、Q同时开始运动,当点P与点C重合时停止运动,点Q也随之停止设点P、Q运动的时间是t秒(t0)(1)当点P到达终点C时,求t的值,并指出此时BQ的长;(2)当点P运动到AD上时,t为何值能使PQDC ?(3)设射线QK扫过梯形ABCD的面积为S,分别求出点E运动到CD、DA上时,S与t的函数关系式;(不必写出t的取值范围)DEKPQCBA  图16(4)PQE能否成为直角三角形?若能,写出t的取值范围;若不能,请说明理由19(07常州市)已知与是反比例函数图象上的两个点(1)求的值;(2)若点,则在反比例函数图象上是否存在点,使得以四点为顶点的四边形为梯形?若存在,求出点的坐标;若不存在,请说明理由(第28题)20(07连云港市)如图,在直角坐标系中,矩形的顶点与坐标原点重合,顶点在坐标轴上,动点从点出发,以的速度沿轴匀速向点运动,到达点即停止设点运动的时间为(1)过点作对角线的垂线,垂足为点求的长与时间的函数关系式,并写出自变量的取值范围;(2)在点运动过程中,当点关于直线的对称点恰好落在对角线上时,求此时直线的函数解析式;(3)探索:以三点为顶点的的面积能否达到矩形面积的?请说明理由yxBCPOAT(第28题图)21(07南京市)在平面内,先将一个多边形以点为位似中心放大或缩小,使所得多边形与原多边形对应线段的比为,并且原多边形上的任一点,它的对应点在线段或其延长线上;接着将所得多边形以点为旋转中心,逆时针旋转一个角度,这种经过和旋转的图形变换叫做旋转相似变换,记为,其中点叫做旋转相似中心,叫做相似比,叫做旋转角(1)填空:如图1,将以点为旋转相似中心,放大为原来的2倍,再逆时针旋转,得到,这个旋转相似变换记为(,);如图2,是边长为的等边三角形,将它作旋转相似变换,得到,则线段的长为;BDE图1BDE图2图3(2)如图3,分别以锐角三角形的三边,为边向外作正方形,点,分别是这三个正方形的对角线交点,试分别利用与,与之间的关系,运用旋转相似变换的知识说明线段与之间的关系22(07苏州市)设抛物线与x轴交于两个不同的点A(一1,0)、B(m,0),与y轴交于点C.且ACB90° (1)求m的值和抛物线的解析式; (2)已知点D(1,n )在抛物线上,过点A的直线交抛物线于另一点E若点P在x轴上,以点P、B、D为顶点的三角形与AEB相似,求点P的坐标 (3)在(2)的条件下,BDP的外接圆半径等于_23(07泰州市)如图,中,它的顶点的坐标为,顶点的坐标为,点从点出发,沿的方向匀速运动,同时点从点出发,沿轴正方向以相同速度运动,当点到达点时,两点同时停止运动,设运动的时间为秒(1)求的度数(2)当点在上运动时,的面积(平方单位)与时间(秒)之间的函数图象为抛物线的一部分,(如图),求点的运动速度(3)求(2)中面积与时间之间的函数关系式及面积取最大值时点的坐标(4)如果点保持(2)中的速度不变,那么点沿边运动时,的大小随着时间的增大而增大;沿着边运动时,的大小随着时间的增大而减小,当点沿这两边运动时,使的点有几个?请说明理由(第29题图)ACBQDOPxy3010O5tS(第29题图)24(07扬州市)如图,矩形中,厘米,厘米()动点同时从点出发,分别沿,运动,速度是厘米秒过作直线垂直于,分别交,于当点到达终点时,点也随之停止运动设运动时间为秒(1)若厘米,秒,则_厘米;(2)若厘米,求时间,使,并求出它们的相似比;(3)若在运动过程中,存在某时刻使梯形与梯形的面积相等,求的取值范围;DQCPNBMADQCPNBMA(4)是否存在这样的矩形:在运动过程中,存在某时刻使梯形,梯形,梯形的面积都相等?若存在,求的值;若不存在,请说明理由25(07江西省南昌市)实验与探究(1)在图1,2,3中,给出平行四边形的顶点的坐标(如图所示),写出图1,2,3中的顶点的坐标,它们分别是_,_,_;图1图2图3(2)在图4中,给出平行四边形的顶点的坐标(如图所示),求出顶点的坐标(点坐标用含的代数式表示);图4归纳与发现(3)通过对图1,2,3,4的观察和顶点的坐标的探究,你会发现:无论平行四边形处于直角坐标系中哪个位置,当其顶点坐标为(如图4)时,则四个顶点的横坐标之间的等量关系为_;纵坐标之间的等量关系为_(不必证明);运用与推广(4)在同一直角坐标系中有抛物线和三个点,(其中)问当为何值时,该抛物线上存在点,使得以为顶点的四边形是平行四边形?并求出所有符合条件的点坐标26(07乐山

    注意事项

    本文(数学综合题专题.doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开