欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    智能传感器与传感器系统ppt课件.ppt

    • 资源ID:78714875       资源大小:5.69MB        全文页数:110页
    • 资源格式: PPT        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    智能传感器与传感器系统ppt课件.ppt

    病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程智能传感器与传感系统的发展及应用1病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程智能传感器与传感器系统的发展及应用0 引言1 智能传感器的定义及功能2 智能传感器与传感系统的特点3智能传感器与传感系统的发展及应用4结语2病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程0 引言传感器是构建现代信息系统的重要组成部分。现代信息技术的三大支柱:1.传感器技术(信息采集)“感官”2.通信技术(信息传输)“神经”3.计算机技术(信息处理)“大脑”3病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程目前,传感器正从传统的分立式,朝着单片集成化、智能化、网络化、系统化的方向发展。据光电行业开发协会(OIDA)作出的最新预测,在2003年2006年期间,智能传感器的国际市场销售量将以每年20的高速度增长。智能传感器可广泛用于工业、农业、商业、交通、环境监测、医疗卫生、军事科研、航空航天、现代办公设备和家用电器等领域。4病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程 1 智能传感器的定义及功能 1.1 智能传感器的定义目前,关于智能传感器的中、英文称谓尚未完全统一。英国人将智能传感器称为“IntelligentSensor”;美 国 人 则 习 惯 于 把 智 能 传 感 器 称 作“SmartSensor”,直译就是“灵巧的、聪明的传感器”。所谓智能传感器,就是带微处理器、兼有信息检测和信息处理功能的传感器。5病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程智能传感器的最大特点就是将传感器检测信息的功能与微处理器的信息处理功能有机地融合在一起。从一定意义上讲,它具有类似于人工智能的作用。需要指出,这里讲的“带微处理器”包含两种情况:(1)将传感器与微处理器集成在一个芯片上构成所谓的“单片智能传感器”(2)传感器能够配微处理器。显然,后者的定义范围更宽,但二者均属于智能传感器的范畴。6病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程世界上第一个智能传感器是美国霍尼韦尔(Honeywell)公司在1983年开发的ST3000系列智能压力传感器。它具有的多参数传感(差压、静压和温度)与智能化的信号调理功能。最近,该公司还相继开发出ST3000900/2000等系列的新产品,使之功能进一步完善。目前,ST3000系列智能压力传感器在全世界的销量已突破50万只,深受广大用户的青睐。7病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程 1.2 智能传感器的功能(1)具有自校准和自诊断功能。智能传感器不仅能自动检测各种被测参数,还能进行自动调零、自动调平衡、自动校准,某些智能传感器还能自标定功能。8病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程(2)具有数据存储、逻辑判断和信息处理功能,能对被测量进行信号调理或信号处理(包括对信号进行预处理、线性化,或对温度、静压力等参数进行自动补偿等)。9病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程(3)具有组态功能,使用灵活。在智能传感器系统中可设置多种模块化的硬件和软件,用户可通过微处理器发出指令,改变智能传感器的硬件模块和软件模块的组合状态,完成不同的测量功能。10病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程(4)具有双向通信功能,能直接与微处理器(P)或单片机(C)通信。11病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程2 智能传感器与传感系统的特点2.1高精度智能传感器采用自调零、自补偿、自校准等多项新技术,能达到高精度指标。美国BB(BURRBROWN)公司:XTR系列精密电流变送器,转换精度0.05,非线性误差0.003。12病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程美国霍尼韦尔(Honeywell)公司:PPT、PPTR系列智能精密压力传感器,测量精度为0.05,比传统压力传感器的精度大约提高了一个数量级。其外形如图1所示。13病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程(a)PPT系列(b)PPTR系列图1外形图14病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程PPT、PPTR系列智能压力传感器的内部电路框图如图2所示。图2PPT、PPTR系列智能压力传感器的内部电路框图15病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程 2.2宽量程智能传感器的测量范围很宽,并具有很强的过载能力。例如,美国ADI公司:ADXRS300型单片偏航角速度陀螺仪集成电路测量转动物体的偏航角速度的范围是300/s。只需并联一只设定电阻,即可将测量范围扩展到1200/s。16病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程 2.3多参数、多功能(1)多路智能温度控制器Pentium4处理器是Intel公司推出的高性能微处理器。最高主频目前已达3.6GHz,它采用了0.13m制程,集成度高达5500万7700万只晶体管,在芯片中还有内置数字温度传感器。其芯片结构如图3所示。17病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程图3Pentium 4处理器芯片的结构18病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程随着Pentium4处理器运行速度的大幅度提高,其功耗也显著增加,必须采取更完善的散热保护措施。2002年,美国ADI公司专门开发出适配Pentium4处理器的ADT7460型智能化远程散热风扇控制器集成电路,并已用于奔腾4计算机产品中。19病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程奔腾4计算机的散热控制电路如图4所示。该计算机中共使用了3台散热风扇。其中,风扇1专门给CPU散热,风扇2和风扇3分别安装在主机箱的前面和后面给机箱散热。图4计算机的散热控制电路20病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程微处理器最高可承受的工作温度规定为tH,台式计算机一般为75,高档笔记本电脑的专用CPU可达100。图5检测CPU的温度21病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程配套软件日臻完善配套软件日臻完善温度传感器专用计算机测试软件。22病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程23病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程24病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程(2)多功能式湿度温度露点智能传感器系统瑞士Sensirion公司:SHT11/15型高精度、自校准、多功能式智能传感器。能同时测量相对湿度、温度和露点等参数;兼有数字湿度计、温度计和露点计这3种仪表的功能;可广泛用于工农业生产、环境监测、医疗仪器、通风及空调设备等领域。25病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程SHT11/15型 智 能 传 感 器 系 统,外 形 尺 寸 仅 为7.62mm(长)5.08mm(宽)2.5mm(高),质量只有0.1g,其体积与一个大火柴头相近,见图6。图6SHT11/15型智能传感器的外形26病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程(1)瑞士Sensirion公司:将半导体芯片(CMOS)与传感器技术融合的CMOSens技术。该项技术亦称“Sensmitter”,它表示传感器(sensor)与变送器(transmitter)的有机结合。27病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程SHT11/15的引脚排列如图7所示。(a)俯视图;(b)侧视图图7SHT11/15的引脚排列图28病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程SHT11/15型湿度温度传感器系统的内部框图如图8所示。图8 SHT11/15型湿度温度传感器的内部电路框图29病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程相对湿度:(空气中所含压强与该温度下饱和水蒸气的压强之比,通常用百分数表示)测量范围:099.99RH;测量精度:2RH分辨力:0.01RH30病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程温度:测量范围:40123.8 测量精度:1 分辨力:0.01 露点:(在水气冷却过程中最初发生结露的温度)测量精度:1分辨力为:0.0131病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程由SHT15构成的相对湿度温度测试系统的电路框图如图9所示。该系统能测量并显示出相对湿度、温度和露点。SHT15作为从机,89C51单片机作为主机,二者通过串行总线进行通信。图9相对湿度温度测试系统的电路框图32病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程(3)多功能式混浊度/电导/温度智能传感器系统 混浊度(亦称不透明度):表示水或其他液体的不透明程度。33病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程当单色光通过含有悬浮粒子的液体时,由于悬浮粒子引起光的散射,使单色光的强度被衰减,其衰减量就代表液体的混浊度。混浊度是个比值,其单位用NTU来表示。34病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程美国霍尼韦尔(Honeywell)公司:APMS10G型带微处理器和单线接口的智能化混浊度传感器系统能同时测量液体的混浊度、电导和温度,构成多参数在线检测系统可广泛用于水质净化,清洗设备及化工、食品、医疗卫生等部门。35病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程APMS10GRCF的外形及插座上的引脚排列如图10所示。(a)外形;(b)插座引脚图10APMS10GRCF的外形及插座上的引脚排列图36病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程APMS10G的内部框图如图11所示。图11 APMS10G的内部框图37病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程混浊度测量原理(图12)38病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程APMS10G通过9脚RS232插座连计算机,接线方式如图13所示。图13APMS10G与计算机的接线39病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程2.4自校准与自标定Motorola公司烟雾检测报警IC主要有三种类型:离子型:MC144671、MC14468光电型:MC145010、MC145011比较器型:MC1457840病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程MC145010配上红外光电室,即可通过传感微小烟雾颗粒的散热光束来检测烟雾。其基本工作原理是:“红外发射二极管红外光在烟雾颗粒的作用下形成散射光束红外接收二极管MC145010BZ发出报警声”。41病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程(1)自校准将MC145010置于校准模式。在该模式下,某些引脚的功能将被重新设定。为进入校准模式,需要给TEST端加负电压,使该端的输出电流为100A并保持一个时钟周期的时间。42病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程(2)自标定利用自检模式可以模拟烟雾条件,对传感器进行自标定。43病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程具体方法是显著提提高高光光信信号号放放大大器器的的增增益益,将烟雾室中的背景反射光看成是由烟雾产生的散射光,从而获得模拟的烟雾条件。经过一个时钟周期后,光信号放大器的增益恢复正常值,模拟的烟雾条件就被撤销。44病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程2.5生物传感器生物识别技术是人体生物特征进行身份鉴别的技术。要求这些特征具有“人各有异”、“终身不变”和“随身携带”这三大特点。45病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程生物识别系统生物识别系统的组成如图14所示。图14生物识别系统的组成46病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程指纹具有惟一性(随身携带、无法复制、人人不同、指指相异)。根据指纹学理论,将两个指纹分别匹配上12个特征时的相同几率仅为1/1050。因此,至今找不出两个指纹完全相同的人,即使相貌酷似的孪生兄弟姐妹,或同一个人的十指之间,指纹也存在明显差异。指纹的这一特点,为身份鉴定提供了客观依据。47病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程指纹图像的获取取像设备主要有以下4种类型:光学取像设备(例如微型三棱镜矩阵)压电式指纹传感器半导体指纹传感器超声波指纹扫描仪。48病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程指纹的基本纹路图案:基本纹路图案有环形、弓形和螺旋形,如图15所示。其他指纹图案都是基于这三种基本图案衍生而成的。(a)环型;(b)弓型;(c)螺旋型图153种基本纹路图案49病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程指纹识别过程:指纹采样指纹图像预处理二值化处理细化,纹路提取细节特征提取指纹匹配(即指纹库的查对)。如图16所示。图16指纹识别过程50病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程半导体指纹传感器半导体指纹传感器亦称单片集成指纹传感器或CMOS固态指纹传感器,它是在20世纪90年代末问世的。指纹传感器,可广泛用于便携式指纹识别仪,网络、数据库及工作站的保护装置,自动柜员机(ATM)、智能卡、手机、计算机、门禁系统等身份识别器,还可构成宾馆、家庭的门锁识别系统。51病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程(1)温差感应式指纹传感器它是基于温度感应的原理而制成的,每个像素都相当于一个微型化的电荷传感器,用来感应手指与芯片映像区域之间某点的温度差,产生一个代表图像信息的电信号。典型产品:美国Atmel公司的FCD4B14。可在0.1s内获取指纹图像(时间一长,手指和芯片就处于相同的温度了)。52病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程FCD4B14的外形、引脚和安装图分别如图17、图18、图19所示。(a)DIP20陶瓷封装;(b)COB封装图17FCD4B14的外形图53病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程(a)表面倾斜式;(b)将传感器装在靠边缘处图18FCD4B14的安装图54病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程FCD4B14型指纹传感器的内部电路框图如图18所示。图19FCD4B14的内部电路框图55病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程传感器共有8行280列,包含82802240个像素,另有一个虚列。基本工作原理:行、列扫描指纹的模拟图像经过两个ADC转换成数字图像通过8位锁存器输出到微处理器或计算机中。56病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程(2)电容感应式指纹传感器由电容阵列构成内部包含9万只微型化电容器基本工作原理:当用户将手指放在正面时,皮肤就组成了电容阵列的一个极板,电容阵列的背面是绝缘极板。由于不同区域指纹的脊和谷之间的距离也不相等,使每个单元的电容量随之而变,由此可获得指纹图像。57病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程典型产品:美国Veridicom公司FPS100FPS100的外形以及由它构成的指纹识别系统输入设备如图20所示,输入设备与计算机相连。(a)FPS100的外形;(b)指纹识别系统的输入设备图20FPS100的外形以及指纹识别系统的输入设备58病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程美国Veridicom公司:图像搜索技术(ImageSeekTM)高速图像传输技术手指自动检测技术。59病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程FPS100的内部框图如图21所示。图21FPS100的内部框图60病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程2.6 超小型化、微功耗智能传感器正朝着短、小、轻、薄的方向发展,以满足航空、航天及国防尖端技术领域的急需,并且为开发便携式、袖珍式检测系统创造了有利条件。61病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程ADXRS300型单片偏航角速度陀螺仪集成电路基于“音叉陀螺仪”(tuningforkgyro)的原理,采用表面显微机械加工工艺和BiCMOS半导体工艺而制成的。62病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程基本工作原理:在科里奥利力的作用下,角速度传感器的转动方向不变,而旋转方向可以是顺时针,也可以是逆时针,由转动物体而定。ADXRS300通过电容对偏航角速度进行采样,再依次经过能产生180相移的型解调器、低通滤波器和输出放大器对信号进行调理,最终获得与Z轴方向的角速度成正比的电压信号。63病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程其工作原理示意图如图22所示。图22角速度传感器工作原理示意图64病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程ADXRS300的内部电路框图如图23所示。图23ADXRS300的内部电路框图65病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程由陀螺制成的角速度计主要用于惯性导航,通信天线的定向。由美国Systron公司生产的QRS110001020型角速度计的指标为:最大量程土100/s,分辨力为0.050/s(均方根值);通数带为0Hz一60Hz。见图23。图2366病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程3智能传感器与传感系统的发展及应用智能微尘传感器生物芯片总线技术高可靠性安全性67病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程3.1 智能微尘传感器 智能微尘(Smart Micro Dust)是一种具有电脑功能的超微型传感器。从肉眼看来,它和一颗沙粒没有多大区别。但内部却包含了从信息收集、信息处理到信息发送所必需的全部部件。68病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程目前,直径约为5mm的智能微尘已经问世,智能微尘的外形及内部结构如图24所示。未来的智能微尘甚至可以悬浮在空中几个小时,搜集、处理并无线发射信息。a)肉眼所看到的智能微尘b)智能微尘的内部结构图24智能微尘的外形及内部结构69病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程 智能微尘还可以“永久”使用,因为它不仅自带微型薄膜电池,还有一个微型的太阳能电池为它充电。最近,美国英特尔公司制定了基于微型传感器网络的新型计算机的发展规划,也将致力于研究智能微尘传感器网络的工作。70病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程3.2 生物芯片西门子公司最近研制出一种能辨别气体及其味道的微型芯片传感器,可检测空气中臭氧含量,监测火灾以及气体泄漏。见图25。71病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程 生物传感器系统亦称生物芯片,它是继大规模集成电路之后的又一次具有深远意义的科技革命。生物芯片不仅能模拟人的嗅觉(如电子鼻)、视觉(如电子眼)、听觉、味觉、触觉等,还能实现某些动物的特异功能(例如海豚的声纳导航测距,蝙蝠的超声波定位,犬类极灵敏的嗅觉,信鸽的方向识别,昆虫的复眼)。生物芯片的效率是传统检测手段的成百、上千倍。72病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程 德国英飞凌(Infineon)公司最近开发出具有活神经细胞、能读取细胞所发出电子信息的“神经元芯片”,芯片上有16384个传感器,每个传感器之间的距离仅为8m。当人体受到电击时,利用它可获取神经组织的活动数据,再将这些数据转换成彩色图片,见图26(b)。图2673病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程3.3 总线技术智能传感器的总线技术现正逐步实现标准化、规范化。目前所采用的总线主要有以下六种:Wire总线I2C总线SMBusSPI总线MicroWire总线USB总线74病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程(1)USB接口USB是“通用串行总线”(UniversalSerialBus)的英文缩写。USB是由Compaq、IBM、Intel、微软等公司于1994年共同提出的。USB接口具有连接单一化、软件自动“侦测”、能直接配PC机、能实现热插拔的优点。目前,USB1.0的传输速率为12Mpbs,而USB2.0的传输速率最高可达480Mpbs。这是其它总线所无法达到的。75病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程(2)SPI总线接口MAX1457属于高精度(0.1)硅压阻式压力信号调理器芯片。由n个压力测量模块与微机、数字电压表可构成基于SPI总线的高精度压力测试系统。76病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程电路如图27所示。图27基于SPI总线的高精度压力测试系统的电路77病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程(3)基于HART协议的测试系统问题的提出:目前智能传感器都是数字式的,而在工业测试现场仍大量使用420mA模拟输出的系统(包括传感器、变送器及二次仪表等)。78病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程为 了 解 决 这 一 技 术 难 题,美 国 罗 斯 蒙 特(Rosemount)公 司 提 出 了 HART协 议(HighwayAddressableRemoteTransducerProtocol,可寻址远程传感器通信协议)作为过渡性标准。该通信协议具有与现场总线相类似的体系结构以及总线式数字通信功能。79病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程HART协议是在模拟信号上叠加了FSK(频移键控)数字信号,因此可同时进行模拟通信和数字通信。这就保证了420mA模拟系统与数字通信系统兼容,能在一条双绞线上连接多台现场设备,构成多站网络,使不同厂家的产品互相通用。80病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程HART协议采用“频移键控”(FSK)技术。频移键控是频率调制的一种方法,典型例子是用二进制信号进行调频,用一个频率表示数据“1”,另一频率表示“0”。HART协议是在4mA20mA的模拟信号上叠加不同的频率信号,来代表所要传输或接收的数据。数字信号用1200Hz代表逻辑“1”、2200Hz代表逻辑“0”,信号传输速率为1200bit/s,数字频率信号的电流幅值为0.5mA。由于在一个周期内数字频率信号的平均值为零,因此不会对4mA20mA的模拟信号产生影响,这是HART协议最重要的特点之一。81病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程图28HART协议的信号波形82病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程3.4虚拟传感器和网络传感器(1)虚拟传感器虚拟传感器是基于软件开发而成的智能传感器。它是在硬件的基础上通过软件来实现测试功能的,利用软件还可完成传感器的校准及标定,使之达到最佳性能指标。83病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程(2)网络传感器智能传感器的另一发展方向就是网络传感器。网络传感器是包含数字传感器、网络接口和处理单元的新一代智能传感器。84病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程被测模拟量数字传感器数字量微处理器测量结果网络。可实现各传感器之间、传感器与执行器之间、传感器与系统之间的数据交换及资源共享,在更换传感器时无须进行标定和校准,可做到“即插即用”。85病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程美国Honeywell公司开发的PPT系列、系列、PPTR系列系列和和PPTE系列系列智能精密压力传感器就属于网络传感器。在构成网络时,能确定每个传感器的全局地址、组地址和设备识别号(ID)地址。用户通过网络就能获取任何一只传感器的数据并对该传感器的参数进行设置。86病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程a)RS232环形网络具有6个PPT单元的RS232环形网络如图29所示。RS232环形网络的起点和终点都在主机的TXD、RXD和GND接口线上。其特点是网络接口可接多台PC机的串行接口。图29具有6个PPT单元的RS232环形网络87病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程b)RS485多点网络具有6个PPT单元的RS485多点网络如图30所示。在该网络中,各PPT单元的ID地址可以不按照顺序排列。图30具有6个PPT单元的RS485多点网络88病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程 2005年7月27日,华旗资讯在人民大会堂召开了“自主创新,产业报国爱国者V(胜利)系列数码相机新品发布会”,首次向外界推出“全球第一台具有内容保真和版权保护的数字水印数码相机”:爱国者V815 plus、V80 plus、V80、V60 plus、V60和数字水印数码相机。其中,具有800万像素的V80型(国家863计划),结束了数码像片不能作为直接证据和没有版权保护的应用瓶颈,填补了数字图像知识产权保护领域的空白。其存储模式为JPEG(最佳/优质/标准)。打破了日本在数码相机领域的技术垄断。89病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程数字水印相机有六大特点:数字水印相机有六大特点:在拍摄照片的同时嵌入一个易损的水印,嵌入水印时,不能改变图像的质量和大小,图像的特征值/摘要与嵌入水印的内容融合、一一对应;水印的嵌入与数码照片的生成同步进行;数码照片中的任何恶意改动,都能破坏水印信息的完整性;能够自动定位数码照片篡改的任何微小区域;完整性的检测/认证能够精确到图像的最小单位(1像素);抵抗水印的重复添加。例如用V815拍一张照片(见下图),然后用PhotoShop在其额头点了一下。然后用随机软件浏览时,系统马上提示照片真实性无法确定,并且指出针对原图修改的位置。90病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程 预计2007年10月24日我国发射的嫦娥1号探月卫星,有效载荷有6套24件,包括CCD立体相机、激光高度计、成像光谱仪、伽马/X射线谱仪、微波探测仪和太阳风粒子探测器等。激光高度计由激光器、望远镜和接收电路三部分组成,由中科院上海技术物理研究所研制。激光高度计首先向月面发射激光束,并立刻用望远镜把反射回来的光束变成电信号;通过精确计算得出该探测点的月球海拔高度,再与CCD立体相机拍摄的平面图像相叠加,获得月面三维地形图。包括人类探月活动从未涉及的月球两极区域。91病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程92病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程x射线谱仪月球元素图93病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程拍摄月球三维影像的立体相机CCD94病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程嫦娥一号卫星的模型95病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程2007年10月24日嫦娥一号探月卫星发射成功96病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程测试厂房内景97病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程98病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程99病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程100病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程我国2005年10月12日发射成功的神舟六号飞船,上面有6万多个元器件。101病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程收藏于北京天文馆的半克月岩102病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程神州六号飞船的仪表板,“神六”由643个部件组成,各种电子元器件有10万多个。焊点12万个,飞船上的电缆总长度有80公里103病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程图像实时测量系统:由两个摄像头、图像压缩处理器、图像综合控制器等设备组成。一个摄像头镜头朝向火箭尾部,用于观测助推器分离和一二级分离;另一个摄像头镜头朝上,用于观测整流罩分离和船箭分离。船箭分离 船箭分离 船箭分离瞬间 104病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程神州六号飞船上的通用加固计算机,操作系统是win2000。所有元器件都经过冲击、高低温等方法筛选,整机还要进行高温、低温等试验。空间计算机采用了双CPU或三CPU,不会出现死机情况。计算机里面有三个CPU,可同步工作,三个里面容许坏一个。一万次的飞行中,只允许两次失败,神六共使用了22台计算机,造价最高的超过100万元人民币,最低的计算机也在十多万元。105病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程“神七”飞天在即“神七”飞天在即106病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程神舟七号成功返回地面107病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程4结语智能传感器是信息时代的骄子,它正成为推动信息产业发展的强大动力。智能传感器在电子信息工程领域具有特殊重要的意义,需要我们继续深入地研究、开发和推广应用。108病原体侵入机体,消弱机

    注意事项

    本文(智能传感器与传感器系统ppt课件.ppt)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开