用频率估计概率(课件)ppt.ppt
病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程到目前为止,对于概率你有何收获?病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程你知道投掷一枚硬币,当投掷一次时,正面朝上的概率是多少?那么投掷两次时,是不是肯定会出现一正一反的结果?投掷100次时,正面朝上的次数约为多少?病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程问题问题:P(A)=P(A)=m mn n2.2.某篮球运动员罚篮一次,投中的概率是某篮球运动员罚篮一次,投中的概率是等可能事件概率公式等可能事件概率公式不是等可能事件病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程2.某篮球运动员罚篮一次,投中的某篮球运动员罚篮一次,投中的概率是概率是多次重复投篮,直到投中的概率稳定在某一多次重复投篮,直到投中的概率稳定在某一数值附近数值附近病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程回顾某一实验,重复做某一实验,重复做n次,次,其中事件其中事件A发生发生m次,次,则该事件的发生频率为则该事件的发生频率为 .m mn n频数:频数:m频率频率病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程观察观察则抛掷一枚硬币正面朝上的频率为则抛掷一枚硬币正面朝上的频率为o.5抛掷一枚硬币,正面朝上的概率为抛掷一枚硬币,正面朝上的概率为0.5病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程随机事件及其概率随机事件及其概率某批乒乓球产品质量检查结果表:某批乒乓球产品质量检查结果表:当抽查的球数很多时,抽到优等品的频率当抽查的球数很多时,抽到优等品的频率 接近于常数接近于常数0.95,在它附近摆动。,在它附近摆动。0.9510.9540.940.970.920.9优等品频率优等品频率200010005002001005019029544701949245优等品数优等品数抽取球数抽取球数 很多很多常数常数病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程某种油菜籽在相同条件下的发芽试验结果表:某种油菜籽在相同条件下的发芽试验结果表:当试验的油菜籽的粒数很多时,油菜籽发芽当试验的油菜籽的粒数很多时,油菜籽发芽的频率的频率 接近于常数接近于常数0.9,在它附近摆动。,在它附近摆动。很多很多 常数常数病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程 随机事件在一次试验中是否随机事件在一次试验中是否发生虽然不能事先确定,但是在发生虽然不能事先确定,但是在大量重复大量重复试验的情况下,它的发试验的情况下,它的发生呈现出一定的生呈现出一定的规律性规律性出现的出现的频率值接近于常数频率值接近于常数.病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程 当重复试验的次数大量大量增加时,事件发生的频率稳定在相应的概率附近附近。因此,我们可以通过大量大量重复实验,用一个事件发生的频用一个事件发生的频率来估计这一事件发生的概率率来估计这一事件发生的概率病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程知识应用知识应用 如图如图,长方形内有一不规则区域长方形内有一不规则区域,现在玩投掷游戏现在玩投掷游戏,如如果随机掷中长方形的果随机掷中长方形的300300次中,有次中,有150150次是落在不规则图形次是落在不规则图形内内.(1)(1)你能估计出掷中不规则图形的概率吗?你能估计出掷中不规则图形的概率吗?(2)(2)若该长方形的面积为若该长方形的面积为150150平方米平方米,试估计不规则图形试估计不规则图形的面积的面积.病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程例:对一批衬衫进行抽查,结果如下表:例:对一批衬衫进行抽查,结果如下表:0.880.890.9010.905求抽取一件衬衫是优等品的概率约是多少?求抽取一件衬衫是优等品的概率约是多少?抽取衬衫抽取衬衫2000件,约有优质品几件?件,约有优质品几件?病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程升华提高升华提高弄清了一种关系弄清了一种关系-频率与概率的关系频率与概率的关系当当试验次数很多或试验时样本容量足试验次数很多或试验时样本容量足够大够大时时,一件事件发生的一件事件发生的频率频率与相应的与相应的概概率率会非常接近会非常接近.此时此时,我们可以用一件事我们可以用一件事件发生的件发生的频率频率来估计这一事件发生的来估计这一事件发生的概概率率.病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程升华提高升华提高了解了一种方法了解了一种方法-用大量试验道的频率去估计概率用大量试验道的频率去估计概率体会了一种思想:体会了一种思想:用样本去估计总体用样本去估计总体用频率去估计概率用频率去估计概率病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程某林业部门要考查某种幼树在一定条件下的移植成活率某林业部门要考查某种幼树在一定条件下的移植成活率,应应应采用什么具体做法应采用什么具体做法?观察在各次试验中得到的幼树成活的频率,谈谈观察在各次试验中得到的幼树成活的频率,谈谈你的看法你的看法估计移植成活率估计移植成活率成活的频率成活的频率0.8()0.940.9230.8830.9050.897是实际问题中的一种概率是实际问题中的一种概率,可理解为成活的概率可理解为成活的概率.病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程数学史实数学史实人们在长期的实践中发现人们在长期的实践中发现,在随机试验中在随机试验中,由于众多微由于众多微小的偶然因素的影响小的偶然因素的影响,每次测得的结果虽不尽相同每次测得的结果虽不尽相同,但大量但大量重复试验所得结果却重复试验所得结果却能反应客观规律能反应客观规律.这称为这称为大数法则大数法则,亦亦称称大数定律大数定律.由频率可以估计概率是由瑞士数学家雅由频率可以估计概率是由瑞士数学家雅各布各布伯努利(伯努利(1654165417051705)最早阐明的,)最早阐明的,因而他被公认为是概率论的先驱之一因而他被公认为是概率论的先驱之一频率稳定性定理频率稳定性定理病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程估计移植成活率估计移植成活率由下表可以发现,幼树移植成活的频率在由下表可以发现,幼树移植成活的频率在左右摆动,左右摆动,并且随着移植棵数越来越大,这种规律愈加明显并且随着移植棵数越来越大,这种规律愈加明显.所以估计幼树移植成活的概率为所以估计幼树移植成活的概率为0.90.9成活的频率成活的频率0.8()0.940.9230.8830.9050.897病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程由下表可以发现,幼树移植成活的频率在由下表可以发现,幼树移植成活的频率在左右摆动,左右摆动,并且随着移植棵数越来越大,这种规律愈加明显并且随着移植棵数越来越大,这种规律愈加明显.所以估计幼树移植成活的概率为所以估计幼树移植成活的概率为0.90.9成活的频率成活的频率0.8()0.940.9230.8830.9050.8971.1.林业部门种植了该幼树林业部门种植了该幼树10001000棵棵,估计能成活估计能成活_棵棵.2.2.我们学校需种植这样的树苗我们学校需种植这样的树苗500500棵来绿化校园棵来绿化校园,则至少则至少向林业部门购买约向林业部门购买约_棵棵.900556估计移植成活率估计移植成活率病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程共同练习共同练习51.5450044.5745039.2440035.3235030.9330024.2525019.4220015.151500.10510.51000.1105.5050柑橘损坏的频率(柑橘损坏的频率()损坏柑橘质量(损坏柑橘质量(m)/千千克克柑橘总质量(柑橘总质量(n)/千克千克nm完成下表完成下表,0.1010.0970.0970.1030.1010.0980.0990.103某水果公司以某水果公司以2 2元元/千克的成本新进了千克的成本新进了10 00010 000千克柑橘千克柑橘,如果公如果公司希望这些柑橘能够获得利润司希望这些柑橘能够获得利润5 0005 000元元,那么在出售柑橘那么在出售柑橘(已去掉损已去掉损坏的柑橘坏的柑橘)时时,每千克大约定价为多少元比较合适每千克大约定价为多少元比较合适?利用你得到的结论解答下列问题利用你得到的结论解答下列问题:病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程51.5450044.5745039.2440035.3235030.9330024.2525019.4220015.151500.10510.51000.1105.5050柑橘损坏的频率(柑橘损坏的频率()损坏柑橘质量(损坏柑橘质量(m)/千千克克柑橘总质量(柑橘总质量(n)/千克千克nm0.1010.0970.0970.1030.1010.0980.0990.103 从表可以看出,柑橘损坏的频率在常数从表可以看出,柑橘损坏的频率在常数_左右摆动,并且随统计左右摆动,并且随统计量的增加这种规律逐渐量的增加这种规律逐渐_,那么可以把柑橘损坏的概率估计为这个,那么可以把柑橘损坏的概率估计为这个常数如果估计这个概率为常数如果估计这个概率为0.1,则柑橘完好的概率为,则柑橘完好的概率为_思思 考考0.1稳定稳定.病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程设每千克柑橘的销价为设每千克柑橘的销价为x元,则应有(元,则应有(x2.22)9 000=5 000解得解得 x2.8因此,出售柑橘时每千克大约定价为因此,出售柑橘时每千克大约定价为2.8元可获利润元可获利润5 000元元 根据估计的概率可以知道,在根据估计的概率可以知道,在10 000千克柑橘中完好柑橘的质量为千克柑橘中完好柑橘的质量为 10 0000.99 000千克,完好柑橘的实际成本为千克,完好柑橘的实际成本为病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程 再见病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程 动物学家通过大量的调查估计出,某种动物活到20岁的概率为0.8,活到25岁的概率是0.5,活到30岁的概率是0.3.现年20岁的这种动物活到25岁的概率为多少?现年25岁的这种动物活到30岁的概率为多少?