欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    相交线与平行线全章知识点归纳及典型题目练习.doc

    • 资源ID:78752270       资源大小:1.04MB        全文页数:7页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    相交线与平行线全章知识点归纳及典型题目练习.doc

    15相交线与平行线知识点梳理汇总一、知识结构图余角余角补角补角角两线相交 对顶角相交线与平行线同位角三线八角内错角同旁内角平行线的判定平行线平行线的性质尺规作图二、基本知识提炼整理(一)余角与补角1、如果两个角的和是直角,那么称这两个角互为余角,简称为互余,称其中一个角是另一个角的余角。2、如果两个角的和是平角,那么称这两个角互为补角,简称为互补,称其中一个角是另一个角的补角。3、互余和互补是指两角和为直角或两角和为平角,它们只与角的度数有关,与角的位置无关。4、余角和补角的性质:同角或等角的余角相等,同角或等角的补角相等。5、余角和补角的性质用数学语言可表示为:(1)则(同角的余角或补角相等)。(2)且则(等角的余角(或补角)相等)。6、余角和补角的性质是证明两角相等的一个重要方法。(二)对顶角1、两条直线相交成四个角,其中不相邻的两个角是对顶角。2、一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。3、对顶角的性质:对顶角相等。4、对顶角的性质在今后的推理说明中应用非常广泛,它是证明两个角相等的依据及重要桥梁。5、对顶角是从位置上定义的,对顶角一定相等,但相等的角不一定是对顶角。(三)同位角、内错角、同旁内角1、两条直线被第三条直线所截,形成了8个角。2、同位角:两个角都在两条直线的同侧,并且在第三条直线(截线)的同旁,这样的一对角叫做同位角。3、内错角:两个角都在两条直线之间,并且在第三条直线(截线)的两旁,这样的一对角叫做内错角。4、同旁内角:两个角都在两条直线之间,并且在第三条直线(截线)的同旁,这样的一对角叫同旁内角。5、这三种角只与位置有关,与大小无关,通常情况下,它们之间不存在固定的大小关系。(四)六类角1、补角、余角、对顶角、同位角、内错角、同旁内角六类角都是对两角来说的。2、余角、补角只有数量上的关系,与其位置无关。3、同位角、内错角、同旁内角只有位置上的关系,与其数量无关。4、对顶角既有数量关系,又有位置关系。(五)平行线的判定与性质平行线的判定平行线的性质1、 同位角相等,两直线平行2、 内错角相等,两直线平行3、 同旁内角互补,两直线平行4、 平行于同一条直线的两直线平行5、 垂直于同一条直线的两直线平行1、两直线平行,同位角相等2、两直线平行,内错角相等3、两直线平行,同旁内角互补4、经过直线外一点,有且只有一条直线与已知直线平行(六)尺规作线段和角1、在几何里,只用没有刻度的直尺和圆规作图称为尺规作图。2、尺规作图是最基本、最常见的作图方法,通常叫基本作图。3、尺规作图中直尺的功能是:(1)在两点间连接一条线段;(2)将线段向两方延长。4、尺规作图中圆规的功能是:(1)以任意一点为圆心,任意长为半径作一个圆;(2)以任意一点为圆心,任意长为半径画一段弧;5、熟练掌握以下作图语言:(1)作射线××;(2)在射线上截取××=××;(3)在射线××上依次截取××=××=××;(4)以点×为圆心,××为半径画弧,交××于点×;(5)分别以点×、点×为圆心,以××、××为半径作弧,两弧相交于点×;(6)过点×和点×画直线××(或画射线××);(7)在×××的外部(或内部)画×××=×××;6、在作较复杂图形时,涉及基本作图的地方,不必重复作图的详细过程,只用一句话概括叙述就可以了。(1)画线段××=××;(2)画×××=×××;相交线与平行线练习题1. 两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为_.2. 两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为_.对顶角的性质:_ _.3. 两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互_.垂线的性质:过一点_一条直线与已知直线垂直.连接直线外一点与直线上各点的所在线段中,_.4. 直线外一点到这条直线的垂线段的长度,叫做_.5. 两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做_ ;如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做_ ;如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_.6. 在同一平面内,不相交的两条直线互相_.同一平面内的两条直线的位置关系只有_与_两种.7. 平行公理:经过直线外一点,有且只有一条直线与这条直线_.推论:如果两条直线都与第三条直线平行,那么_.8. 平行线的判定:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:_.两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:_. 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:_.9. 在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_ .10. 平行线的性质:两条平行直线被第三条直线所截,同位角相等.简单说成:.两条平行直线被第三条直线所截,内错角相等.简单说成:_.两条平行直线被第三条直线所截,同旁内角互补.简单说成:_ .11. 如图,那么点A到BC的距离是_,点B到AC的距离是_,点A、B两点的距离是_,点C到AB的距离是_12. 设、b、c为平面上三条不同直线,a) 若,则a与c的位置关系是_;b) 若,则a与c的位置关系是_;c) 若,则a与c的位置关系是_13. 如图,已知AB、CD、EF相交于点O,ABCD,OG平分AOE,FOD28°,求COE、AOE、AOG的度数14. 如图,与是邻补角,OD、OE分别是与的平分线,试判断OD与OE的位置关系,并说明理由15. 如图,ABDE,试问B、E、BCE有什么关系解:BEBCE过点C作CFAB,则_( )又ABDE,ABCF,_( )E_()BE12即BEBCE16. 如图,已知12求证:ab直线,求证:17. 阅读理解并在括号内填注理由:如图,已知ABCD,12,试说明EPFQ证明:ABCD,MEBMFD()又12,MEB1MFD2,即MEP_ EP_()18. 已知DBFGEC,A是FG上一点,ABD60°,ACE36°,AP平分BAC,求:BAC的大小;PAG的大小.19. 如图,已知,于D,为上一点,于F,交CA于G.求证.20. 已知:如图1=2,C=D,问A与F相等吗?试说明理由

    注意事项

    本文(相交线与平行线全章知识点归纳及典型题目练习.doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开