恒定电流的磁场(一.doc
第八章 恒定电流的磁场(一)一. 选择题:1.(基础训练3) B .有一无限长通电流的扁平铜片,宽度为a,厚度不计,电流I在铜片上均匀分布,在铜片外与铜片共面,离铜片右边缘为b处的P点(如图)的磁感强度的大小为 (A) (B) (C) (D) 提示:2.(基础训练4) D 如图,两根直导线ab和cd沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I从a端流入而从d端流出,则磁感强度沿图中闭合路径L的积分等于 (A) (B) (C) (D) 提示3、(自测提高1) D 1、无限长直圆柱体,半径为R,沿轴向均匀流有电流设圆柱体内( r < R )的磁感应强度为Bi,圆柱体外( r > R )的磁感应强度为Be,则有 (A) Bi、Be均与r成正比 (B) Bi、Be均与r成反比 (C) Bi与r成反比,Be与r成正比 (D) Bi与r成正比,Be与r成反比 提示: 当r<R时 当 r > R时 4、自测提高7C 如图,正方形的四个角上固定有四个电荷量均为q的点电荷此正方形以角速度w 绕AC轴旋转时,在中心O点产生的磁感应强度大小为B1;此正方形同样以角速度w 绕过O点垂直于正方形平面的轴旋转时,在O点产生的磁感应强度的大小为B2,则B1与B2间的关系为 (A) B1 = B2 (B) B1 = 2B2 (C) B1 = B2 (D) B1 = B2 /4 提示: 设正方形边长为,, 两种情况下正方形旋转时的角速度w 相同,所以每个点电荷随着正方形旋转时形成的等效电流相同, 为 当正方形绕AC轴旋转时,一个点电荷在点产生的磁感应强度的大小为,实际上有两个点电荷同时绕旋转产生电流,在点产生的总磁感应强度的大小为同理,当正方形绕过O点垂直于正方形平面的轴旋转时,在O点产生的磁感应强度的大小为故有5. 附录C 2 B 有一半径为的单匝圆线圈,通以电流,若将该导线弯成匝数为的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中心的磁感应强度和磁矩分别是原来的:(A) 4倍和1/8 (B) 4倍和1/2 (C) 2倍和1/4 (D) 2倍和1/2 提示:由半径为的单匝线圈弯成匝数为的线圈以后,每一个线圈的半径变为,故磁感应强度变为原来的2倍,磁矩变为原来的1/4,总的变化为4倍和1/2 二. 填空题6.(基础训练11)均匀磁场的磁感强度与半径为r的圆形平面的法线的夹角为a ,今以圆周为边界,作一个半球面S,S与圆形平面组成封闭面如所示则通过S面的磁通量F = 。 提示:根据磁场的高斯定理,通过S面的磁通量数值上等于通过圆平面的通量。当题中涉及的是封闭曲面时,面的法向方向指向凸的一面,因此通过S面的磁通量为负值。7(基础训练13)如图所示,在无限长直载流导线的右侧有面积为S1和S2的两个矩形回路两个回路与长直载流导线在同一平面,且矩形回路的一边与长直载流导线平行则通过面积为S1的矩形回路的磁通量与通过面积为S2的矩形回路的磁通量之比为 1:1提示:设矩形回路的高为,则通过面积为S1的矩形回路的磁通量同理通过面积为S1的矩形回路的磁通量8.(基础训练1)一质点带有电荷q =8.0×10-10 C,以速度v =3.0×105 m·s-1在半径为R =6.00×10-3 m的圆周上,作匀速圆周运动该带电质点在轨道中心所产生的磁感强度B =_6.67×10-7(T),该带电质点轨道运动的磁矩pm =_7.2×10-7(Am2)_(m0 =4p×10-7 H·m-1) 提示: 9.(基础训练1)将半径为R的无限长导体薄壁管(厚度忽略)沿轴向割去一宽度为h ( h << R)的无限长狭缝后,再沿轴向流有在管壁上均匀分布的电流,其面电流密度(垂直于电流的单位长度截线上的电流)为i ,则管轴线磁感强度的大小是 . 提示: 利用填补法思想 10(自测提高13)、一半径为a的无限长直载流导线,沿轴向均匀地流有电流I若作一个半径为R = 5a、高为l的柱形曲面,已知此柱形曲面的轴与载流导线的轴平行且相距3a (如图所示)则在圆柱侧面S上的积分 _0_ 提示:根据无限长直载流导线产生磁场的对称性,其产生磁场的磁感应线穿入侧面的根数(磁通量为负)与穿出的根数(磁通量为正)相同,代数和为零。11、(自测提高17)、如图所示,在宽度为d的导体薄片上有电流I沿此导体长度方向流过,电流在导体宽度方向均匀分布导体外在导体中线附近处P点的磁感应强度的大小为 提示:三.计算题12 (基础训练21)一根无限长导线弯成如图形状,设各线段都在同一平面内(纸面内),其中第二段是半径为R的四分之一圆弧,其余为直线导线中通有电流I,求图示中O点处的磁感应强度解: B1=B4=0 方向垂直纸面向里方向垂直纸面向里方向垂直纸面向里13(基础训练23). 如图所示,半径为R,线电荷密度为l (>0)的均匀带电的圆线圈,绕过圆心与圆平面垂直的轴以角速度w 转动,求轴线上任一点的的大小及其方向 解: 圆线圈的总电荷 ,转动时等效的电流为 ,代入环形电流在轴线上产生磁场的公式得 方向沿y轴正向。14.(基础训练25). 一无限长的电缆,由一半径为a的圆柱形导线和一共轴的半径分别为b、c的圆筒状导线组成,如图所示。在两导线中有等值反向的电流I通过,求:(1)内导体中任一点(r<a)的磁感应强度;(2)两导体间任一点(a<r<b)的磁感应强度;(3)外导体中任一点(b<r<c)的磁感应强度; (4)外导体外任一点(r>c)的磁感应强度。解:用安培环路定理。磁感应强度的方向与内导线的电流成右手螺旋关系。其大小满足: (r为场点到轴线的距离)(1)(2), (3) (4)15(自测提高26)在一半径R =1.0 cm的无限长半圆筒形金属薄片中,沿长度方向有横截面上均匀分布的电流I = 5.0 A通过试求圆柱轴线任一点的磁感强度(m0 =4p×10-7 N/A2)解:如图所示,在1/2圆筒上取dl段,其中电流为 在P点 (轴) 选坐标如图 , 即半圆筒电流关于Y轴对称,所以在P点产生的总的磁感应强度 为:Y方向的矢量和为零;X方向的合磁感应强度为: 方向沿负X轴 四附加题16. 例题11-6 在半径为a的无限长金属圆柱体内挖去一半径为的无限长柱体,两柱体轴线平行,轴间距为.空心导体沿轴向通有电流I并沿截面均匀分布。(1) 求腔内两柱体轴线连线上任一点的磁感应强度(a) (b) (c)dbMdbN(2) 证明腔内磁场是均匀磁场。解:【答案见参考书】(1) 空腔柱体电流产生的磁场(磁感应强度用表示),看成是完整柱体电流在点产生的磁场(用表示)与在空腔处存在一个电流密度相同、电流方向相反的柱体电流产生的磁场(用表示)的叠加。如图 (b)所示。即: 而、方向相同,故: (2)如图 (c)所示,在空腔柱体内任取一点N,空腔柱体电流在N点产生磁场的磁感应强度用表示。由 根据安培环路定理:,方向与环路内电流构成右手螺旋关系,如图 (c)示。 同理:,方向如图 (c)示。 考虑电流的方向、矢径的方向以及的方向关系,将 、写为:所以,空腔柱体电流在N点产生的磁感应强度为 可见腔内磁感应强度大小为,方向只与连线有关(与连线垂直),与点在腔内的位置无关,即空腔内的场是均匀磁场。17. (自测提高28)用安培环路定理证明,图中所表示的那种不带边缘效应的均匀磁场不可能存在证明:用反证法. 假设存在图中那样不带边缘效应的均匀磁场,并设磁感强度的大小为B作矩形有向闭合环路如图所示,其ab边在磁场内,其上各点的磁感强度为B,cd边在磁场外,其上各点的磁感强度为零由于环路所围的面积没有任何电流穿过,因而根据安培环路定理有: 因 所以 B = 0,这不符合原来的假设故这样的磁场不可能存在