函数知识点习题及答案.doc
§02. 函数 知识要点一、本章知识网络结构:二、知识回顾:(一) 映射与函数1. 映射与一一映射2.函数函数三要素是定义域,对应法则和值域,而定义域和对应法则是起决定作用的要素,因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数才是同一函数.3.反函数反函数的定义设函数的值域是C,根据这个函数中x,y 的关系,用y把x表示出,得到x=(y). 若对于y在C中的任何一个值,通过x=(y),x在A中都有唯一的值和它对应,那么,x=(y)就表示y是自变量,x是自变量y的函数,这样的函数x=(y) (yC)叫做函数的反函数,记作,习惯上改写成(二)函数的性质函数的单调性定义:对于函数f(x)的定义域I内某个区间上的任意两个自变量的值x1,x2,若当x1<x2时,都有f(x1)<f(x2),则说f(x)在这个区间上是增函数;若当x1<x2时,都有f(x1)>f(x2),则说f(x) 在这个区间上是减函数.若函数y=f(x)在某个区间是增函数或减函数,则就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做函数y=f(x)的单调区间.此时也说函数是这一区间上的单调函数.2.函数的奇偶性7. 奇函数,偶函数:偶函数:设()为偶函数上一点,则()也是图象上一点.偶函数的判定:两个条件同时满足定义域一定要关于轴对称,例如:在上不是偶函数.满足,或,若时,.奇函数:设()为奇函数上一点,则()也是图象上一点.奇函数的判定:两个条件同时满足定义域一定要关于原点对称,例如:在上不是奇函数.满足,或,若时,.8. 对称变换:y = f(x)y =f(x)y =f(x)9. 判断函数单调性(定义)作差法:对带根号的一定要分子有理化,例如:在进行讨论.10. 外层函数的定义域是内层函数的值域.例如:已知函数f(x)= 1+的定义域为A,函数ff(x)的定义域是B,则集合A与集合B之间的关系是 . 解:的值域是的定义域,的值域,故,而A,故.11. 常用变换:.证:证:12. 熟悉常用函数图象:例:关于轴对称. 关于轴对称.熟悉分式图象:例:定义域,值域值域前的系数之比.(三)指数函数与对数函数指数函数的图象和性质a>10<a<1图象性质(1)定义域:R(2)值域:(0,+)(3)过定点(0,1),即x=0时,y=1(4)x>0时,y>1;x<0时,0<y<1(4)x>0时,0<y<1;x<0时,y>1.(5)在 R上是增函数(5)在R上是减函数对数函数y=logax的图象和性质:对数运算:(以上)a>10<a<1图象性质(1)定义域:(0,+)(2)值域:R(3)过点(1,0),即当x=1时,y=0(4)时 时 y>0时 时(5)在(0,+)上是增函数在(0,+)上是减函数注:当时,.:当时,取“+”,当是偶数时且时,而,故取“”.例如:中x0而中xR).()与互为反函数.当时,的值越大,越靠近轴;当时,则相反.专题1 函数(文科)例1 已知,函数。设,记曲线在点处的切线为。()求的方程; ()设与轴交点为。证明: ; 若,则()分析:欲求切线l的方程,则须求出它的斜率,根据切线斜率的几何意义便不难发现,问题归结为求曲线在点的一阶导数值。解:求的导数:,由此得切线的方程:。()分析:要求的变化范围,则须找到使产生变化的原因,显然,变化的根本原因可归结为的变化,因此,找到与的等量关系式,就成; 欲比较与的大小关系,判断它们的差的符号即可。 证:依题意,切线方程中令y0,.由.。点评:本小题主要考查利用导数求曲线切线的方法,考查不等式的基本性质,以及分析和解决问题的能力。例2、 函数y1的图象是( )解析一:该题考查对f(x)图象以及对坐标平移公式的理解,将函数y的图形变形到y,即向右平移一个单位,再变形到y即将前面图形沿x轴翻转,再变形到y1,从而得到答案B.解析二:可利用特殊值法,取x0,此时y1,取x2,此时y0.因此选B.答案:B点评:1、选择题要注意利用特值排除法、估值排除法等。例3设二次函数,方程的两个根满足. 当时,证明.分析:在已知方程两根的情况下,根据函数与方程根的关系,可以写出函数的表达式,从而得到函数的表达式. 证明:由题意可知., , 当时,.又, ,综上可知,所给问题获证. 点评:本题主要利用函数与方程根的关系,写出二次函数的零点式。例4、设f(x)是定义在(0,)上的增函数,且对任意的x,y(0,),都有f(xy)f(x)f(y)。(1)求证:当x(1,)时,f(x)0;且f()f(x)f(y).(2)若f(2)1,解不等式f(x2)f(2x)2.分析:由f(xy)f(x)(y),不难想到f(x)应为对数函数形式,所以f(1)0,由题意条件,f(x)为增函数,据此不难求解。解:(1)令xy1,则由f(xy)f(x)f(y)得f(1×1)f(1)f(1).即f(1)2f(1),f(1)0,又由于函数f(x)在(0,)上为增函数,所以对任意x(1,),有f(x)f(1)0,故f(x)0.设x,y(0,),于是f(x)f(y) f( ) f(y),即f()f(x)f(y).(2)由于f(2)1,所以ff(2)f(2)f(2×2)f(4),由f(x2)f(2x)2,f(x2)f(2x)f(4), f(x2)f(8x),又因为函数f(x)在(0,)上为增函数,所以x28x,因x(0,)所以 0x . 例5设函数()求的最小值;()若对恒成立,求实数的取值范围解:(),当时,取最小值,即()令,由得,(不合题意,舍去)当变化时,的变化情况如下表:t10递增极大值1m递减在内有最大值在内恒成立等价于在内恒成立,即等价于,所以的取值范围为19. 已知定义域为的函数是奇函数。()求的值;()若对任意的,不等式恒成立,求的取值范围;解:()因为是奇函数,所以0,即 又由f(1) f(1)知 ()由()知,易知在上为减函数。又因是奇函数,从而不等式: 等价于,因为减函数,由上式推得:即对一切有:,从而判别式20. 已知定义在正实数集上的函数,其中设两曲线,有公共点,且在该点处的切线相同(I)用表示,并求的最大值;(II)求证:()解:()设与在公共点处的切线相同,由题意,即由得:,或(舍去)即有令,则于是当,即时,;当,即时,故在为增函数,在为减函数,于是在的最大值为()设,则故在为减函数,在为增函数,于是函数在上的最小值是故当时,有,即当时,