欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    3.2.1 双曲线及其标准方程 导学案-人教A版高中数学选择性必修第一册.docx

    • 资源ID:78915429       资源大小:1.42MB        全文页数:10页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    3.2.1 双曲线及其标准方程 导学案-人教A版高中数学选择性必修第一册.docx

    3.2.1双曲线及其标准方程 导学案 1.掌握双曲线的标准方程及其求法.2.会利用双曲线的定义和标准方程解决简单实际问题. 3.与椭圆的标准方程进行比较,并加以区分.重点:用双曲线的定义和标准方程解决简单实际问题. 难点:双曲线的标准方程及其求法.1.双曲线的定义 2.双曲线的标准方程 焦点位置焦点在x轴上焦点在y轴上图形标准方程 (a>0,b>0) (a>0,b>0)焦点F1(-c,0),F2(c,0)F1(0,-c),F2(0,c)a,b,c的关系b2=c2-a2双曲线与椭圆的比较  椭圆双曲线定义|MF1|+|MF2|=2a(2a>|F1F2|)|MF1|-|MF2|=2a(0<2a<|F1F2|)a,b,c的关系b2=a2-c2b2=c2-a2焦点在x轴上焦点在y轴上1.在双曲线的定义中,若去掉条件0<2a<|F1F2|,则点的轨迹是怎样的?2.判断(1)平面内到两定点的距离的差等于常数(小于两定点间距离)的点的轨迹是双曲线.()(2)平面内到点F1(0,4),F2(0,-4)的距离之差等于5的点的轨迹是双曲线.()(3)平面内到点F1(0,4),F2(0,-4)的距离之差的绝对值等于8的点的轨迹是双曲线.()3.过点(1,1),且ba=2的双曲线的标准方程是()A.x212-y2=1B.y212-x2=1C.x2-y212=1 D.x212-y2=1或y212-x2=1一、 情景导学 双曲线也是具有广泛应用的一种圆锥曲线,如发电厂冷却塔的外形、通过声音时差测定定位等都要用到双曲线的性质。本节我们将类比椭圆的研究方法研究双曲线的有关问题。 我们知道,平面内与两个定点F1,F2的距离的和等于常数(大于F1F2)的点的轨迹是椭圆,一个自然的问题是:平面内与两个定点的距离的差等于常数的点的轨迹是什么? 从椭圆的情形一样,下面我们用坐标法来探讨尝试与发现中的问题,并求出双曲线的标准方程。设双曲线的焦点为 F1和F2 ,焦距为2c ,而且双曲线上的动点P满足PF1-PF2=2a,其中c>a>0 ,以F1,F2所在直线为y轴,线段F1F2的垂直平分线为x轴,建立平面直角坐标系,如图所示,此时;双曲线的标准方程是什么?二、典例解析例1求适合下列条件的双曲线的标准方程.(1)焦点在x轴上,a=25,经过点A(-5,2);(2)经过两点A(-7,-62),B(27,3). 求双曲线的标准方程与求椭圆的标准方程的方法相似,可以先根据其焦点位置设出标准方程,然后用待定系数法求出a,b的值.若焦点位置不确定,可按焦点在x轴和y轴上两种情况讨论求解,此方法思路清晰,但过程复杂.若双曲线过两定点,可设其方程为mx2+ny2=1(mn<0),通过解方程组即可确定m,n,避免了讨论,从而简化求解过程.跟踪训练1 根据下列条件,求双曲线的标准方程.(1)焦点在x轴上,经过点P(4,-2)和点Q(26,22);(2)过点P3,154,Q-163,5且焦点在坐标轴上.跟踪训练2. “神舟”九号飞船返回舱顺利到达地球后,为了及时将航天员安全救出,地面指挥中心在返回舱预计到达区域安排了三个救援中心(记A,B,C),A在B的正东方向,相距6千米,C在B的北偏西30°方向,相距4千米,P为航天员着陆点.某一时刻,A接收到P的求救信号,由于B,C两地比A距P远,在此4秒后,B,C两个救援中心才同时接收到这一信号.已知该信号的传播速度为1千米/秒,求在A处发现P的方位角.1.已知两定点F1(-5,0),F2(5,0),动点P满足|PF1|-|PF2|=2a,则当a=3和5时,P点的轨迹为()A.双曲线和一条直线B.双曲线和一条射线C.双曲线的一支和一条直线D.双曲线的一支和一条射线2.已知双曲线x2a2-y2b2=1(a>0,b>0),F1,F2为其两个焦点,若过焦点F1的直线与双曲线的同一支相交,且所得弦长|AB|=m,则ABF2的周长为()A.4aB.4a-m C.4a+2m D.4a-2m3.已知方程x21+m+y2m-2=1表示双曲线,则m的取值范围是()A.(-1,+)B.(2,+) C.(-,-1)(2,+) D.(-1,2)4. 一块面积为12公顷的三角形形状的农场.如图所示PEF,已知tanPEF=12,tanPFE=-2,试建立适当直角坐标系,求出分别以E,F为左、右焦点且过点P的双曲线方程.5.求适合下列条件的双曲线的标准方程.(1)两个焦点的坐标分别是(-5,0),(5,0),双曲线上的点与两焦点的距离之差的绝对值等于8;(3)a=b,经过点(3,-1).(2)以椭圆x28+y25=1长轴的端点为焦点,且经过点(3,10);参考答案:知识梳理1.提示:当2a等于|F1F2|时,动点的轨迹是以F1,F2为端点的两条方向相反的射线(包括端点).当2a大于|F1F2|时,动点的轨迹不存在.当2a等于零时,动点轨迹为线段F1F2的垂直平分线.2.判断答案:(1)×(2)×(3)×3.解析:ba=2,b2=2a2.当焦点在x轴上时,设双曲线方程为x2a2-y22a2=1,将点(1,1)代入方程中,得a2=12.此时双曲线的标准方程为x212-y2=1.同理求得焦点在y轴上时,双曲线的标准方程为y212-x2=1.答案:D 学习过程一、情景导学以F1,F2所在直线为x 轴,线段F1F2的垂直平分线为y轴,建立平面直角坐标系xOy,此时双曲线的焦点分别为F1(-c,0),F2 (c,0)设Px,y是双曲线上一点,则PF1-PF2=2a,因为PF1=(x+c)2+y2, PF2=(x-c)2+y2,所以(x+c)2+y2-x-c2+y2=±2a 由得(x+c)2+y2-(x-c)2+y2(x+c)2+y2+(x-c)2+y2 =±2a 整理得(x+c)2+y2-x-c2+y2=±2cax.          且与右边同时取正号或负号,+ 整理得(x+c)2+y2 =±(a+cax)  将式平方再整理得c2-a2a2x2-y2= c2-a2 因为c>a>0 ,所以c2-a2>0设c2-a2=b2且b>0,则可化为x2a2-y2b2=1 (a>0,b>0) 例1分析(1)设双曲线方程为x2a2-y2b2=1(a>0,b>0),代入点的坐标,解方程即可得到.(2)可设双曲线方程为mx2-ny2=1,代入点的坐标,得到方程组,解方程组即可得到.解:(1)设双曲线方程为x2a2-y2b2=1(a>0,b>0),则a=25,25a2-4b2=1,解得b2=16,则双曲线的标准方程为x220-y216=1.(2)设双曲线方程为mx2-ny2=1,则有49m-72n=1,28m-9n=1,解得m=125,n=175,则双曲线的标准方程为x225-y275=1.跟踪训练1 解:(1)因为焦点在x轴上,可设双曲线方程为x2a2-y2b2=1(a>0,b>0),将点(4,-2)和(26,22)代入方程得16a2-4b2=1,24a2-8b2=1,解得a2=8,b2=4,所以双曲线的标准方程为x28-y24=1.(2)设双曲线的方程为Ax2+By2=1,AB<0.因为点P,Q在双曲线上,则9A+22516B=1,2569A+25B=1,解得A=-116,B=19.故双曲线的标准方程为y29-x216=1.例2.跟踪训练2. 解:因为|PC|=|PB|,所以P在线段BC的垂直平分线上.又因为|PB|-|PA|=4<6=|AB|,所以P在以A,B为焦点的双曲线的右支上.以线段AB的中点为坐标原点,AB的垂直平分线所在直线为y轴,正东方向为x轴正方向建立平面直角坐标系,如图所示.则A(3,0),B(-3,0),C(-5,23).所以双曲线方程为x24-y25=1(x>2),BC的垂直平分线方程为x-3y+7=0.联立两方程解得x=8(舍负),y=53,所以P(8,53),kPA=tanPAx=3,所以PAx=60°,所以P点在A点的北偏东30°方向.达标检测1. 解析:当a=3时,根据双曲线的定义及|PF1|>|PF2|可推断出其轨迹是双曲线的一支.当a=5时,方程y2=0,可知其轨迹与x轴重合,舍去在x轴负半轴上的一段,又因为|PF1|-|PF2|=2a,说明|PF1|>|PF2|,所以应该是起点为(5,0),与x轴重合向x轴正方向延伸的射线.答案:D2.解析:不妨设|AF2|>|AF1|,由双曲线的定义,知|AF2|-|AF1|=2a,|BF2|-|BF1|=2a,所以|AF2|+|BF2|=(|AF1|+|BF1|)+4a=m+4a,于是ABF2的周长l=|AF2|+|BF2|+|AB|=4a+2m.故选C.答案:C3.解析:方程x21+m+y2m-2=1,(m-2)(m+1)<0,解得-1<m<2,m的取值范围是(-1,2).答案:D4. 解:以E,F所在直线为x轴,EF的垂直平分线为y轴建立直角坐标系,如图.设以E,F为焦点且过点P的双曲线方程为x2a2-y2b2=1,焦点为E(-c,0),F(c,0).由tanPEF=12,tanEFP=-2,设PFx=,则tan =tan(-EFP)=2,得直线PE和直线PF的方程分别为y=12(x+c)和y=2(x-c).联立两方程,解得x=53c,y=43c,即P点坐标为53c,43c.在EFP中,|EF|=2c,EF上的高为点P的纵坐标,SEFP=43c2=12,c=3,即P点坐标为(5,4).由两点间的距离公式|PE|=(5+3)2+42=45,|PF|=(5-3)2+42=25,a=5.又b2=c2-a2=4,故所求双曲线的方程为x25-y24=1.5.解:(1)由双曲线的定义知,2a=8,所以a=4,又知焦点在x轴上,且c=5,所以b2=c2-a2=25-16=9,所以双曲线的标准方程为x216-y29=1.(2)由题意得,双曲线的焦点在x轴上,且c=22.设双曲线的标准方程为x2a2-y2b2=1(a>0,b>0),则有a2+b2=c2=8,9a2-10b2=1,解得a2=3,b2=5.故所求双曲线的标准方程为x23-y25=1.(3)当焦点在x轴上时,可设双曲线方程为x2-y2=a2,将点(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的双曲线的标准方程为x28-y28=1.当焦点在y轴上时,可设双曲线方程为y2-x2=a2,将点(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦点不可能在y轴上.综上,所求双曲线的标准方程为x28-y28=1.

    注意事项

    本文(3.2.1 双曲线及其标准方程 导学案-人教A版高中数学选择性必修第一册.docx)为本站会员(yanj****uan)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开