欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    注塑机英文翻译.docx

    • 资源ID:78967307       资源大小:102.64KB        全文页数:17页
    • 资源格式: DOCX        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    注塑机英文翻译.docx

    机械类论文下载Failure Analysis,Dimensional Determination And Analysis,Applications Of Cams(故障的分析、尺寸的决定以及凸轮的分析和应用)中英文对照 作者:不详 来源于:机械论文文档在线免费下载网 发布时间:2009-1-2 19:59:56Failure Analysis,Dimensional Determination And Analysis,Applications Of CamsINTRODUCTIONIt is absolutely essential that a design engineer know how and why parts fail so that reliable machines that require minimum maintenance can be designedSometimes a failure can be serious,such as when a tire blows out on an automobile traveling at high speedOn the other hand,a failure may be no more than a nuisanceAn example is the loosening of the radiator hose in an automobile cooling systemThe consequence of this latter failure is usually the loss of some radiator coolant,a condition that is readily detected and correctedThe type of load a part absorbs is just as significant as the magnitudeGenerally speaking,dynamic loads with direction reversals cause greater difficulty than static loads,and therefore,fatigue strength must be consideredAnother concern is whether the material is ductile or brittleFor example,brittle materials are considered to be unacceptable where fatigue is involvedMany people mistakingly interpret the word failure to mean the actual breakage of a partHowever,a design engineer must consider a broader understanding of what appreciable deformation occursA ductile material,however will deform a large amount prior to ruptureExcessive deformation,without fracture,may cause a machine to fail because the deformed part interferes with a moving second partTherefore,a part fails(even if it has not physically broken)whenever it no longer fulfills its required functionSometimes failure may be due to abnormal friction or vibration between two mating partsFailure also may be due to a phenomenon called creep,which is the plastic flow of a material under load at elevated temperaturesIn addition,the actual shape of a part may be responsible for failureFor example,stress concentrations due to sudden changes in contour must be taken into accountEvaluation of stress considerations is especially important when there are dynamic loads with direction reversals and the material is not very ductileIn general,the design engineer must consider all possible modes of failure,which include the followingStressDeformationWearCorrosionVibrationEnvironmental damageLoosening of fastening devicesThe part sizes and shapes selected also must take into account many dimensional factors that produce external load effects,such as geometric discontinuities,residual stresses due to forming of desired contours,and the application of interference fit jointsCams are among the most versatile mechanisms availableA cam is a simple two-member deviceThe input member is the cam itself,while the output member is called the followerThrough the use of cams,a simple input motion can be modified into almost any conceivable output motion that is desiredSome of the common applications of cams areCamshaft and distributor shaft of automotive engine Production machine toolsAutomatic record playersPrinting machinesAutomatic washing machinesAutomatic dishwashersThe contour of high-speed cams (cam speed in excess of 1000 rpm) must be determined mathematicallyHowever,the vast majority of cams operate at low speeds(less than 500 rpm) or medium-speed cams can be determined graphically using a large-scale layoutIn general,the greater the cam speed and output load,the greater must be the precision with which the cam contour is machinedDESIGN PROPERTIES OF MATERIALSThe following design properties of materials are defined as they relate to the tensile testFigure 2.7Static Strength The strength of a part is the maximum stress that the part can sustain without losing its ability to perform its required functionThus the static strength may be considered to be approximately equal to the proportional limit,since no plastic deformation takes place and no damage theoretically is done to the materialStiffness Stiffness is the deformation-resisting property of a materialThe slope of the modulus line and,hence,the modulus of elasticity are measures of the stiffness of a materialResilience Resilience is the property of a material that permits it to absorb energy without permanent deformationThe amount of energy absorbed is represented by the area underneath the stress-strain diagram within the elastic regionToughness Resilience and toughness are similar propertiesHowever,toughness is the ability to absorb energy without ruptureThus toughness is represented by the total area underneath the stress-strain diagram, as depicted in Figure 28bObviously,the toughness and resilience of brittle materials are very low and are approximately equalBrittleness A brittle material is one that ruptures before any appreciable plastic deformation takes placeBrittle materials are generally considered undesirable for machine components because they are unable to yield locally at locations of high stress because of geometric stress raisers such as shoulders,holes,notches,or keywaysDuctility A ductility material exhibits a large amount of plastic deformation prior to ruptureDuctility is measured by the percent of area and percent elongation of a part loaded to ruptureA 5%elongation at rupture is considered to be the dividing line between ductile and brittle materialsMalleability Malleability is essentially a measure of the compressive ductility of a material and,as such,is an important characteristic of metals that are to be rolled into sheetsFigure 2.8Hardness The hardness of a material is its ability to resist indentation or scratchingGenerally speaking,the harder a material,the more brittle it is and,hence,the less resilientAlso,the ultimate strength of a material is roughly proportional to its hardnessMachinability Machinability is a measure of the relative ease with which a material can be machinedIn general,the harder the material,the more difficult it is to machine COMPRESSION AND SHEAR STATIC STRENGTHIn addition to the tensile tests,there are other types of static load testing that provide valuable informationCompression Testing Most ductile materials have approximately the same properties in compression as in tensionThe ultimate strength,however,can not be evaluated for compressionAs a ductile specimen flows plastically in compression,the material bulges out,but there is no physical rupture as is the case in tensionTherefore,a ductile material fails in compression as a result of deformation,not stressShear Testing Shafts,bolts,rivets,and welds are located in such a way that shear stresses are producedA plot of the tensile testThe ultimate shearing strength is defined as the stress at which failure occursThe ultimate strength in shear,however,does not equal the ultimate strength in tensionFor example,in the case of steel,the ultimate shear strength is approximately 75% of the ultimate strength in tensionThis difference must be taken into account when shear stresses are encountered in machine componentsDYNAMIC LOADSAn applied force that does not vary in any manner is called a static or steady loadIt is also common practice to consider applied forces that seldom vary to be static loadsThe force that is gradually applied during a tensile test is therefore a static loadOn the other hand,forces that vary frequently in magnitude and direction are called dynamic loadsDynamic loads can be subdivided to the following three categoriesVarying Load With varying loads,the magnitude changes,but the direction does notFor example,the load may produce high and low tensile stresses but no compressive stressesReversing Load In this case,both the magnitude and direction changeThese load reversals produce alternately varying tensile and compressive stresses that are commonly referred to as stress reversalsShock Load This type of load is due to impactOne example is an elevator dropping on a nest of springs at the bottom of a chuteThe resulting maximum spring force can be many times greater than the weight of the elevator,The same type of shock load occurs in automobile springs when a tire hits a bump or hole in the roadFATIGUE FAILURE-THE ENDURANCE LIMIT DIAGRAMThe test specimen in Figure 2.10a,after a given number of stress reversals will experience a crack at the outer surface where the stress is greatestThe initial crack starts where the stress exceeds the strength of the grain on which it actsThis is usually where there is a small surface defect,such as a material flaw or a tiny scratchAs the number of cycles increases,the initial crack begins to propagate into a continuous series of cracks all around the periphery of the shaftThe conception of the initial crack is itself a stress concentration that accelerates the crack propagation phenomenonOnce the entire periphery becomes cracked,the cracks start to move toward the center of the shaftFinally,when the remaining solid inner area becomes small enough,the stress exceeds the ultimate strength and the shaft suddenly breaksInspection of the break reveals a very interesting pattern,as shown in Figure 2.13The outer annular area is relatively smooth because mating cracked surfaces had rubbed against each otherHowever,the center portion is rough,indicating a sudden rupture similar to that experienced with the fracture of brittle materials This brings out an interesting factWhen actual machine parts fail as a result of static loads,they normally deform appreciably because of the ductility of the materialFigure 2.13Thus many static failures can be avoided by making frequent visual observations and replacing all deformed partsHowever,fatigue failures give to warningFatigue fail mated that over 90% of broken automobile parts have failed through fatigueThe fatigue strength of a material is its ability to resist the propagation of cracks under stress reversalsEndurance limit is a parameter used to measure the fatigue strength of a materialBy definition,the endurance limit is the stress value below which an infinite number of cycles will not cause failureLet us return our attention to the fatigue testing machine in Figure 2.9The test is run as follows:A small weight is inserted and the motor is turned onAt failure of the test specimen,the counter registers the number of cycles N,and the corresponding maximum bending stress is calculated from Equation 2.5The broken specimen is then replaced by an identical one,and an additional weight is inserted to increase the loadA new value of stress is calculated,and the procedure is repeated until failure requires only one complete cycleA plot is then made of stress versus number of cycles to failureFigure 2.14a shows the plot,which is called the endurance limit or S-N curveSince it would take forever to achieve an infinite number of cycles,1 million cycles is used as a referenceHence the endurance limit can be found from Figure 2.14a by noting that it is the stress level below which the material can sustain 1 million cycles without failureThe relationship depicted in Figure 2.14 is typical for steel,because the curve becomes horizontal as N approaches a very large numberThus the endurance limit equals the stress level where the curve approaches a horizontal tangentOwing to the large number of cycles involved,N is usually plotted on a logarithmic scale,as shown in Figure 2.14bWhen this is done,the endurance limit value can be readily detected by the horizontal straight lineFor steel,the endurance limit equals approximately 50% of the ultimate strengthHowever,if the surface finish is not of polished equality,the value of the endurance limit will be lowerFor example,for steel parts with a machined surface finish of 63 microinches ( in),the percentage drops to about 40%For rough surfaces (300inor greater),the percentage may be as low as 25% The most common type of fatigue is that due to bendingThe next most frequent is torsion failure,whereas fatigue due to axial loads occurs very seldomSpring materials are usually tested by applying variable shear stresses that alternate from zero to a maximum value,simulating the actual stress patternsIn the case of some nonferrous metals,the fatigue curve does not level off as the number of cycles becomes very largeThis continuing toward zero stress means that a large number of stress reversals will cause failure regardless of how small the value of stress isSuch a material is said to have no endurance limitFor most nonferrous metals having an endurance limit,the value is about 25% of the ultimate strengthEFFECTS OF TEMPERATURE ON YIELD STRENGTH AND MODULUS OF ELASTICITYGenerally speaking,when stating that a material possesses specified values of properties such as modulus of elasticity and yield strength,it is implied that these values exist at room temperatureAt low or elevated temperatures,the properties of materials may be drastically differentFor example,many metals are more brittle at low temperaturesIn addition,the modulus of elasticity and yield strength deteriorate as the temperature increasesFigure 2.23 shows that the yield strength for mild steel is reduced by about 70% in going from room temperature to 1000oFFigure 2.24 shows the reduction in the modulus of elasticity E for mild steel as the temperature increasesAs can be seen from the graph,a 30% reduction in modulus of elasticity occurs in going from room temperature to 1000oFIn this figure,we also can see that a part loaded below the proportional limit at room temperature can be permanently deformed under the same load at elevated temperaturesFigure 2.24CREEP: A PLASTIC PHENOMENONTemperature effects bring us to a phenomenon called creep,which is the increasing plastic deformation of a part under constant load as a function of timeCreep also occurs at room temperature,but the process is so slow that it rarely becomes significant during the expected life of the temperature is raised to 300oC or more,the increasing plastic deformation can become significant within a relatively short period of timeThe creep strength of a material is its ability to resist creep,and creep strength data can be obtained by conducting long-time creep tests simulating actual part operating conditionsDuring the test,the plastic strain is monitored for given material at specified temperaturesSince creep is a plastic deformation phenomenon,the dimensions of a part experiencing creep are permanently alteredThus,if a part operates with tight clearances,the design engineer must accurately predict the amount of creep that will occur during the life of the machineOtherwise,problems such binding or interference can occur Creep also can be a problem in the case where bolts are used to clamp tow parts together at ele

    注意事项

    本文(注塑机英文翻译.docx)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开