2019年高考浙江高考数学试题及答案(精校版).doc
2019年高考浙江高考数学试题及答案(精校版)2019年高考浙江高考数学试题及答案:精校版未经允许 请勿转载 019年普通高等学校招生全国统一考试浙江卷数学参考公式:若事件互斥,则 若事件相互独立,则 若事件在一次试验中发生的概率是,则次独立重复试验中事件恰好发生次的概率台体的体积公式其中分别表示台体的上、下底面积,表示台体的高柱体的体积公式其中表示柱体的底面积,表示柱体的高锥体的体积公式其中表示锥体的底面积,表示锥体的高球的表面积公式球的体积公式其中表示球的半径选取题部分共40分一、选取题:此题共1小题,每题分,共40分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的未经许可 请勿转载1.已经知道全集,集合,则UB A B C D. 2.渐近线方程为的双曲线的离心率是 A. B. 1. D. 2.若实数满足约束条件,则的最大值是 B. C 10D.24.祖暅是我们国家南北朝时代的伟大科学家.他提出的“幂势既同,则积不容易称为祖暅原理,利用该原理可以得到柱体体积公式,其中是柱体的底面积,是柱体的高,若某柱体的三视图如以以下图,则该柱体的体积是 未经许可 请勿转载A. 18B.162C.182D 325若,则“是 “的 A. 充分不必要条件B 必要不充分条件. 充分必要条件D. 既不充分也不必要条件6在同一直角坐标系中,函数且图象可能是 A. B. C. D. 7.设,则随机变量的分布列是:则当在内增大时 增大B.减小C. 先增大后减小先减小后增大8.设三棱锥底面是正三角形,侧棱长均相等,是棱上的点不含端点,记直线与直线所成角为,直线与平面所成角为,二面角的平面角为,则 未经许可 请勿转载A. B.C. D9.已经知道,函数,若函数恰有三个零点,则 A. B. C. D. 10设,数列中,a1=,an1=an2+b,, 则 A. 当. 当C. 当D. 当非选取题部分共10分二、填空题:此题共7小题,多空题每题6分,单空题每题4分,共6分11复数为虚数单位,则_.2已经知道圆的圆心坐标是,半径长是.若直线与圆相切于点,则_,_13在二项式的展开式中,常数项是_;系数为有理数的项的个数是_.14在中,,,点在线段上,若,则_;_.15.已经知道椭圆的左焦点为,点在椭圆上且在轴的上方,若线段的中点在以原点为圆心,为半径的圆上,则直线的斜率是_.未经许可 请勿转载16.已经知道,函数,若存在,使得,则实数的最大值是_.17.已经知道正方形的边长为,当每个取遍时,的最小值是_;最大值是_.三、解答题:此题共5小题,共4分,解答应写出文字说明、证明过程或演算步骤.18.设函数.已经知道函数是偶函数,求的值;2求函数 的值域.19.如此图,已经知道三棱柱,平面平面,,分别是的中点1证明:;求直线与平面所成角的余弦值20.设等差数列前项和为,数列满足:对每成等比数列.求数列的通项公式;2记 证明:21.如此图,已经知道点为抛物线,点为焦点,过点的直线交抛物线于两点,点在抛物线上,使得的重心在轴上,直线交轴于点,且在点右侧记的面积为.未经许可 请勿转载1求的值及抛物线的标准方程;2求的最小值及此时点的坐标.22.已经知道实数,设函数 当时,求函数的单调区间;2对任意均有 求的取值范围.注:为自然对数的底数219年普通高等学校招生全国统一考试浙江卷数学参考公式:若事件互斥,则 若事件相互独立,则 若事件在一次试验中发生的概率是,则次独立重复试验中事件恰好发生次的概率台体的体积公式其中分别表示台体的上、下底面积,表示台体的高柱体的体积公式其中表示柱体的底面积,表示柱体的高锥体的体积公式其中表示锥体的底面积,表示锥体的高球的表面积公式球的体积公式其中表示球的半径选取题部分共40分一、选取题:此题共10小题,每题4分,共0分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的.未经许可 请勿转载.已经知道全集,集合,则UAB. . 【答案:】A【解析】【分析】此题借根据交集、补集的定义可得.容易题,注重了基础知识、基本计算能力的考查.【详解】,则【点睛】易于理解集补集的概念、交集概念有误.渐近线方程为的双曲线的离心率是 A. . 1C. D. 2【答案::】C【解析】【分析】此题根据双曲线的渐近线方程可求得,进一步可得离心率.容易题,注重了双曲线基础知识、基本计算能力的考查.未经许可 请勿转载【详解】因为双曲线的渐近线为,所以,则,双曲线的离心率.【点睛】理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误3.若实数满足约束条件,则的最大值是 B.1. 10D 12【答案:】C【解析】【分析】此题是简单线性规划问题的基此题型,根据“画、移、解等步骤可得解题目难度不大题,注重了基础知识、基本技能的考查.未经许可 请勿转载【详解】在平面直角坐标系内画出题中的不等式组表示的平面区域为以为顶点的三角形区域包含边界,由图易得当目标函数经过平面区域的点时,取最大值.未经许可 请勿转载【点睛】解答此类问题,要求作图要准确,观察要仔细.往往由于由于作图欠准确而影响答案:的准确程度,也有可能在解方程组的过程中出错.未经许可 请勿转载4.祖暅是我们国家南北朝时代的伟大科学家.他提出的“幂势既同,则积不容易称为祖暅原理,利用该原理可以得到柱体体积公式,其中是柱体的底面积,是柱体的高,若某柱体的三视图如以以下图,则该柱体的体积是未经许可 请勿转载A. 5B. 162C.182D. 32【答案:】【解析】【分析】此题首先根据三视图,还原得到几何体棱柱,根据题目给定的数据,计算几何体的体积.常规题目难度不大,注重了基础知识、视图用图能力、基本计算能力的考查未经许可 请勿转载【详解】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为,则该棱柱的体积为.未经许可 请勿转载【点睛】易错点有二,一是不能正确还原几何体;二是计算体积有误.为避免出错,应注重多观察、细心算.5.若,则“是 “的 A 充分不必要条件B. 必要不充分条件C. 充分必要条件D.既不充分也不必要条件【答案:】【解析】【分析】此题根据基本不等式,结合选项,判断得出充分性成立,利用“特殊值法,通过特取值,推出矛盾,确定必要性不成立.题目有一定难度,注重重要知识、基础知识、逻辑推理能力的考查.未经许可 请勿转载【详解】当时,则当时,有,解得,充分性成立;当时,满足,但此时,必要性不成立,综上所述,“是“的充分不必要条件.未经许可 请勿转载【点睛】易出现的错误有,一是基本不等式掌握不熟,导致判断失误;二是不能灵活的应用“赋值法,通过特取的值,从假设情况下推出合理结果或矛盾结果.未经许可 请勿转载6.在同一直角坐标系中,函数且的图象可能是 A. . 【答案::】D【解析】【分析】此题通过讨论的不同取值情况,分别讨论此题指数函数、对数函数的图象和,结合选项,判断得出正确结论.题目不难,注重重要知识、基础知识、逻辑推理能力的考查.未经许可 请勿转载【详解】当时,函数过定点且单调递减,则函数过定点且单调递增,函数过定点且单调递减,选项符合;当时,函数过定点且单调递增,则函数过定点且单调递减,函数过定点且单调递增,各选项均不符合.综上,选D未经许可 请勿转载【点睛】易出现的错误有,一是指数函数、对数函数的图象和性质掌握不熟,导致判断失误;二是不能通过讨论的不同取值范围,认识函数的单调性未经许可 请勿转载7.设,则随机变量的分布列是:则当在内增大时 A.增大 减小C. 先增大后减小D. 先减小后增大【答案:::】D【解析】【分析】研究方差随变化的增大或减小规律,常用方法就是将方差用参数表示,应用函数知识求解此题根据方差与期望的关系,将方差表示为的二次函数,二测函数的图象和性质解题.题目有一定综合性,注重重要知识、基础知识、运算求解能力的考查.未经许可 请勿转载【详解】方法1:由分布列得,则,则当在内增大时,先减小后增大.方法:则故选【点睛】易出现的错误有,一是数学期望、方差以及二者之间的关系掌握不熟,无从着手;二是计算能力差,不能正确得到二次函数表达式.未经许可 请勿转载8.设三棱锥的底面是正三角形,侧棱长均相等,是棱上的点不含端点,记直线与直线所成角为,直线与平面所成角为,二面角的平面角为,则 未经许可 请勿转载A .D. 【答案:::】B【解析】【分析】此题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算.解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小而充分利用图形特征,则可事倍功半.未经许可 请勿转载【详解】方法1:如此图为中点,在底面的投影为,则在底面投影在线段上,过作垂直,易得,过作交于,过作,交于,则,则,即,即,综上所述,答案:为B未经许可 请勿转载方法2:由最小角定理,记的平面角为显然由最大角定理,故选B.法2:特殊位置取为正四面体,为中点,易得,故选.【点睛】常规解法下易出现的错误有,不能正确作图得出各种角.未能想到利用“特殊位置法,寻求简便解法.未经许可 请勿转载9.已经知道,函数,若函数恰有三个零点,则 . . C. D. 【答案::】D【解析】【分析】此题综合性较强,注重重要知识、基础知识、运算求解能力、分类讨论思想及数形结合思想的考查.研究函数方程的方法较为灵活,通常需要结合函数的图象加以分析.未经许可 请勿转载【详解】原题可转化为与,有三个交点.当时,,且,则1当时,如此图与不可能有三个交点实际上有一个,排除A,B2当时,分三种情况,如此图与若有三个交点,则,答案:::选D下面证明:时,时,,则,才能保证至少有两个零点,即,若另一零点在【点睛】遇到此类问题,不少考生会一筹莫展由于方程中涉及两个参数,故按“一元化想法,逐步分类讨论,这一过程中有可能分类不全面、不彻底.未经许可 请勿转载1.设,数列中,1=a,n+1=n2+b,,,则 A.当. 当C.当D. 当【答案:::】A【解析】【分析】此题综合性较强,注重重要知识、基础知识、运算求解能力、分类讨论思想的考查.此题从确定不动点出发,通过研究选项得解.未经许可 请勿转载【详解】选项B:不动点满足时,如此图,若,排除如此图,若为不动点则选项C:不动点满足,不动点为,令,则,排除选项:不动点满足,不动点为,令,则,排除.选项:证明:当时,处理一:可依次迭代到;处理二:当时,则则,则故选A【点睛】遇到此类问题,不少考生会一筹莫展利用函数方程思想,通过研究函数的不动点,进一步讨论的可能取值,利用“排除法求解未经许可 请勿转载非选取题部分共11分二、填空题:此题共7小题,多空题每题6分,单空题每题4分,共3分1.复数为虚数单位,则_.【答案:::】【解析】【分析】此题先计算,而后求其模.或直接利用模的性质计算.容易题,注重基础知识、运算求解能力的考查.【详解】.【点睛】此题考查了复数模的运算,属于简单题.2.已经知道圆的圆心坐标是,半径长是若直线与圆相切于点,则_,_.【答案:::】 1 2【解析】【分析】此题主要考查圆的方程、直线与圆的位置关系.首先通过确定直线的斜率,进一步得到其方程,将代入后求得,计算得解.未经许可 请勿转载【详解】可知,把代入得,此时.【点睛】:解答直线与圆的位置关系问题,往往要借助于数与形的结合,特别是要注意应用圆的几何性质.13.在二项式的展开式中,常数项是_;系数为有理数的项的个数是_.【答案::】 1 2. 【解析】【分析】此题主要考查二项式定理、二项展开式的通项公式、二项式系数,属于常规题目从写出二项展开式的通项入手,根据要求,考察的幂指数,使问题得解.未经许可 请勿转载【详解】的通项为可得常数项为,因系数为有理数,,有共5个项【点睛】此类问题解法比较明确,首要的是要准确记忆通项公式,特别是“幂指数不能记混,其次,计算要细心,确保结果正确.未经许可 请勿转载1.中,,,点在线段上,若,则_;_【答案:】 1. . 【解析】【分析】此题主要考查解三角形问题,即正弦定理、三角恒等变换、数形结合思想及函数方程思想通过引入,在、中应用正弦定理,建立方程,进而得解.未经许可 请勿转载【详解】在中,正弦定理有:,而,所以.【点睛】解答解三角形问题,要注意充分利用图形特征5.已经知道椭圆的左焦点为,点在椭圆上且在轴的上方,若线段的中点在以原点为圆心,为半径的圆上,则直线的斜率是_.未经许可 请勿转载【答案:】【解析】【分析】结合图形可以发现,利用三角形中位线定理,将线段长度用坐标表示考试点圆的方程,与椭圆方程联立可进一步求解.利用焦半径及三角形中位线定理,则更为简洁.未经许可 请勿转载【详解】方法:由题意可知,由中位线定理可得,设可得,联立方程可解得舍,点在椭圆上且在轴的上方,求得,所以方法2:焦半径公式应用解析1:由题意可知,由中位线定理可得,即求得,所以.【点睛】此题主要考查椭圆的标准方程、椭圆的几何性质、直线与圆的位置关系,利用数形结合思想,是解答解析几何问题的重要途径未经许可 请勿转载16.已经知道,函数,若存在,使得,则实数的最大值是_【答案:】【解析】【分析】此题主要考查含参绝对值不等式、函数方程思想及数形结合思想,属于能力型考题.从研究入手,令,从而使问题加以转化,通过绘制函数图象,观察得解.未经许可 请勿转载【详解】使得,使得令,则原不等式转化为存在,由折线函数,如此图只需,即,即的最大值是【点睛】对于函数不等式问题,需充分利用转化与化归思想、数形结合思想.17已经知道正方形的边长为1,当每个取遍时,的最小值是_;最大值是_.【答案:】 2.【解析】【分析】此题主要考查平面向量的应用,题目难度较大从引入“基向量入手,简化模的表现形式,利用转化与化归思想将问题逐步简化未经许可 请勿转载【详解】要使的最小,只需要,此时只需要取此时等号成立当且仅当均非负或者均非正,并且均非负或者均非正。比如则.点睛:对于此题需充分利用转化与化归思想,从“基向量入手,最后求不等式最值,是一道向量和不等式的综合题。未经许可 请勿转载【点睛】对于平面向量的应用问题,需充分利用转化与化归思想、数形结合思想.三、解答题:此题共小题,共74分,解答应写出文字说明、证明过程或演算步骤.18.设函数.1已经知道函数是偶函数,求的值;2求函数的值域.【答案:::】1;.【解析】【分析】1由函数的解析式结合偶函数的性质即可确定的值;首先整理函数的解析式为的形式,然后确定其值域即可.【详解】1由题意结合函数的解析式可得:,函数为偶函数,则当时,即,结合可取,相应的值为.由函数的解析式可得:.据此可得函数值域为:.【点睛】此题主要考查由三角函数的奇偶性确定参数值,三角函数值域的求解,三角函数式的整理变形等知识,意在考查学生的转化能力和计算求解能力.未经许可 请勿转载19.如此图,已经知道三棱柱,平面平面,分别是的中点.证明:;2求直线与平面所成角的余弦值.【答案:::】1证明见解析;2.【解析】【分析】1由题意首先证得线面垂直,然后利用线面垂直的定义即可证得线线垂直;2建立空间直角坐标系,分别求得直线的方向向量和平面的法向量,然后结合线面角的正弦值和同角三角函数基本关系可得线面角的余弦值.未经许可 请勿转载【详解】1如以以下图,连结,等边中,则,平面ABC平面,且平面ABC平面,由面面垂直的性质定理可得:平面,故,由三棱柱的性质可知,而,故,且,由线面垂直的判定定理可得:平面,结合平面,故2在底面AB内作EC,以点E为坐标原点,H,EC,方向分别为x,y,z轴正方向建立空间直角坐标系.未经许可 请勿转载设,则,,,据此可得:,由可得点的坐标为,利用中点坐标公式可得:,由于,故直线EF的方向向量为:设平面的法向量为,则:,据此可得平面的一个法向量为,此时,设直线EF与平面所成角为,则.【点睛】此题考查了立体几何中的线线垂直的判定和线面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答此题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.未经许可 请勿转载20.设等差数列的前项和为,,,数列满足:对每成等比数列求数列的通项公式;2记 证明:【答案:】1,;2证明见解析.【解析】【分析】1首先求得数列的首项和公差确定数列的通项公式,然后结合三项成等比数列的充分必要条件整理计算即可确定数列的通项公式;未经许可 请勿转载2结合1的结果对数列的通项公式进行放缩,然后利用不等式的性质和裂项求和的方法即可证得题中的不等式.未经许可 请勿转载【详解】由题意可得:,解得:,则数列的通项公式为.其前项和则成等比数列,即:,据此有:,故.2结合1中的通项公式可得:,则【点睛】此题主要考查数列通项公式的求解,,裂项求和的方法,数列中用放缩法证明不等式的方法等知识,意在考查学生的转化能力和计算求解能力未经许可 请勿转载21如此图,已经知道点为抛物线,点为焦点,过点的直线交抛物线于两点,点在抛物线上,使得的重心在轴上,直线交轴于点,且在点右侧.记的面积为.未经许可 请勿转载1求的值及抛物线的标准方程;2求的最小值及此时点的坐标.【答案:】11,;,.【解析】【分析】1由焦点坐标确定p的值和准线方程即可;2设出直线方程,联立直线方程和抛物线方程,结合韦达定理求得面积的表达式,最后结合均值不等式的结论即可求得的最小值和点G的坐标.未经许可 请勿转载【详解】1由题意可得,则,抛物线方程为,准线方程为2设,设直线AB的方程为,与抛物线方程联立可得:,故:,设点C的坐标为,由重心坐标公式可得:,,令可得:,则即,由斜率公式可得:,直线A的方程为:,令可得:,故,且,由于,代入上式可得:,由可得,则,则当且仅当,即,时等号成立此时,,则点G的坐标为.【点睛】直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系,此题主要考查了抛物线准线方程的求解,直线与抛物线的位置关系,三角形重心公式的应用,基本不等式求最值的方法等知识,意在考查学生的转化能力和计算求解能力未经许可 请勿转载22.已经知道实数,设函数1当时,求函数的单调区间;2对任意均有 求的取值范围.注:为自然对数的底数.【答案::】的单调递增区间是,单调递减区间是;2.【解析】【分析】1首先求得导函数的解析式,然后结合函数的解析式确定函数的单调区间即可.2由题意首先由函数在特殊点的函数值得到的取值范围,然后证明所得的范围满足题意即可.【详解】1当时,,函数的定义域为,且:,因此函数的单调递增区间是,单调递减区间是.构造函数,注意到:,注意到时恒成立,满足;当时,不合题意,且,解得:,故.下面证明刚好是满足题意的实数a的取值范围.分类讨论:当时,,令,则:,易知,则函数单调递减,满足题意.b当时,等价于,左侧是关于a的开口向下的二次函数,其判别式,令,注意到当时,于是在上单调递增,而,于是当时命题成立,而当时,此时的对称轴为随着递增,于是对称轴在的右侧,而成立,不等式等价于.因此综上可得:实数a的取值范围是【点睛】导数是研究函数的单调性、极值最值最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:1考查导数的几何意义,往往与解析几何、微积分相联系 2利用导数求函数的单调区间,判断单调性;已经知道单调性,求参数 3利用导数求函数的最值极值,解决生活中的优化问题.4考查数形结合思想的应用.未经许可 请勿转载 未经允许 请勿转载