函数微分基本概念.ppt
推广推广第八章第八章 一元函数微分学一元函数微分学 多元函数微分学多元函数微分学 注意注意:善于类比善于类比,区别异同区别异同多元函数微分法多元函数微分法 目录 上页 下页 返回 结束 第八章 第一节第一节一、区域一、区域二、多元函数的概念二、多元函数的概念三、多元函数的极限三、多元函数的极限四、多元函数的连续性四、多元函数的连续性多元函数的基本概念多元函数的基本概念 目录 上页 下页 返回 结束 一、一、区域区域1.邻域邻域点集称为点 P0 的 邻域邻域.例如例如,在平面上,(圆邻域)在空间中,(球邻域)说明:说明:若不需要强调邻域半径,也可写成点 P0 的去心邻域去心邻域记为目录 上页 下页 返回 结束 在讨论实际问题中也常使用方邻域,平面上的方邻域为。因为方邻域与圆邻域可以互相包含.目录 上页 下页 返回 结束 2.区域区域(1)内点、外点、边界点设有点集 E 及一点 P:若存在点 P 的某邻域 U(P)E,若存在点 P 的某邻域 U(P)E=,若对点 P 的任一任一邻域 U(P)既含 E中的内点也含 E则称 P 为 E 的内点内点;则称 P 为 E 的外点外点;则称 P 为 E 的边界点边界点 .的外点,显然,E 的内点必属于 E,E 的外点必不属于 E,E 的边界点可能属于 E,也可能不属于 E.目录 上页 下页 返回 结束(2)聚点聚点若对任意给定的 ,点P 的去心邻域内总有E 中的点,则称 P 是 E 的聚点聚点.聚点可以属于 E,也可以不属于 E(因为聚点可以为 所有聚点所成的点集成为 E 的导集导集.E 的边界点)目录 上页 下页 返回 结束 D(3)开区域及闭区域 若点集 E 的点都是内点,则称 E 为开集;若点集 E E,则称 E 为闭集;若集 D 中任意两点都可用一完全属于 D 的折线相连,开区域连同它的边界一起称为闭区域.则称 D 是连通的;连通的开集称为开区域,简称区域;。E 的边界点的全体称为 E 的边界,记作E;目录 上页 下页 返回 结束 例如,例如,在平面上开区域闭区域目录 上页 下页 返回 结束 整个平面 点集 是开集,是最大的开域,也是最大的闭域;对区域 D,若存在正数 K,使一切点 PD 与某定点 A 的距离 AP K,则称 D 为有界域有界域,界域界域.否则称为无无它不是区域,因为它不是连通的开集目录 上页 下页 返回 结束*3.n 维空间维空间n 元有序数组的全体所构成的集合记作即中的每一个元素用单个粗体字母 x 表示,即定义:线性运算其元素称为点或 n 维向量.xi 称为 x 的第 i 个坐标 或 第 i 个分量.称为 n 维空间,目录 上页 下页 返回 结束 的距离距离定义为中点 a 的 邻域邻域为与零元 0 的距离为记作则称 x 显然趋于a,目录 上页 下页 返回 结束 二、多元函数的概念二、多元函数的概念 引例引例:圆柱体的体积 定量理想气体的压强 三角形面积的海伦公式目录 上页 下页 返回 结束 定义定义1.设非空点集点集 D 称为函数的定义域定义域;数集称为函数的值域值域 .特别地,当 n=2 时,有二元函数当 n=3 时,有三元函数映射称为定义在 D 上的 n 元函数元函数,记作目录 上页 下页 返回 结束 例如,二元函数定义域为圆域说明说明:二元函数 z=f(x,y),(x,y)D图形为中心在原点的上半球面.的图形一般为空间曲面 .三元函数 定义域为图形为空间中的超曲面.单位闭球目录 上页 下页 返回 结束 三、多元函数的极限三、多元函数的极限定义定义2.设 n 元函数点,则称 A 为函数(也称为 n 重极限)当 n=2 时,记二元函数的极限可写作:P0 是 D 的聚若存在常数 A,对一记作都有对任意正数 ,总存在正数,切目录 上页 下页 返回 结束 例例1.设求证:证证:故总有要证 目录 上页 下页 返回 结束 例例2.设求证:证:证:故总有要证 目录 上页 下页 返回 结束 若当点趋于不同值或有的极限不存在,解解:设 P(x,y)沿直线 y=k x 趋于点(0,0),在点(0,0)的极限.则可以断定函数极限则有k 值不同极限不同!在(0,0)点极限不存在.以不同方式趋于不存在.例例3.讨论函数函数目录 上页 下页 返回 结束 例例4.求解解:因而此函数定义域不包括 x,y 轴则故目录 上页 下页 返回 结束 方法2 见到此类问题,用极坐标替换法,也可以得前面的结论:令目录 上页 下页 返回 结束 仅知其中一个存在,推不出其他二者存在.注注.二重极限不同不同.如果它们都存在,则三者相等.例如例如,显然与累次极限但由例3 知它在(0,0)点二重极限不存在.例3目录 上页 下页 返回 结束 四、四、多元函数的连续性多元函数的连续性 定义定义3.设 n 元函数定义在 D 上,如果函数在 D 上各点处都连续,则称此函数在 D 上如果存在否则称为不连续,此时称为间断点.则称 n 元函数连续.连续,目录 上页 下页 返回 结束 例如例如,函数在点(0,0)极限不存在,又如又如,函数上间断.故(0,0)为其间断点.在圆周结论结论:一切多元初等函数在定义区域内连续.目录 上页 下页 返回 结束 定理定理:若 f(P)在有界闭域 D 上连续,则*(4)f(P)必在D 上一致连续.在 D 上可取得最大值 M 及最小值 m;(3)对任意(有界性定理)(最值定理)(介值定理)(一致连续性定理)闭域上多元连续函数有与一元函数类似的如下性质:(证明略)目录 上页 下页 返回 结束 解解:原式例例5.求例例6.求函数的连续域.解解:目录 上页 下页 返回 结束 内容小结内容小结1.区域 邻域:区域连通的开集 2.多元函数概念n 元函数常用二元函数(图形一般为空间曲面)三元函数目录 上页 下页 返回 结束 有3.多元函数的极限4.多元函数的连续性1)函数2)闭域上的多元连续函数的性质:有界定理;最值定理;介值定理3)一切多元初等函数在定义区域内连续目录 上页 下页 返回 结束 备用题备用题1.设求解法解法1 令目录 上页 下页 返回 结束 1.设求解法解法2 令即目录 上页 下页 返回 结束 2.是否存在?解解:利用所以极限不存在.目录 上页 下页 返回 结束 3.证明在全平面连续.证证:为初等函数,故连续.又故函数在全平面连续.由夹逼准则得