欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    优质课角边角”“角角边”课件.ppt

    • 资源ID:79050102       资源大小:1.07MB        全文页数:25页
    • 资源格式: PPT        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    优质课角边角”“角角边”课件.ppt

    12.2三角形的判定导入新课讲授新课当堂练习课堂小结第第3课时课时 “角边角角边角”、“角角边角角边”情境引入学习目标1探索并正确理解三角形全等的判定方法角边角“ASA”和角角边“AAS”;2会用三角形全等的判定方法“ASA”和“AAS”证明两个三角形全等,进而证明线段或角相等导入新课导入新课 如图,小明不慎将一块三角形玻璃打碎为三块,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具吗?如果可以,带哪块去合适?你能说明其中理由吗?情境引入321三角形全等的判定(“角边角”定理)一问题:如果已知一个三角形的两角及一边,那么有几种可能的情况呢?ABCABC“两角及夹边”“两角和其中一角的对边”它们能判定两个三角形全等吗?作图探究 先任意画出一个ABC,再画一个A B C ,使A B =AB,A =A,B =B(即使两角和它们的夹边对应相等).把画好的A B C 剪下,放到ABC上,它们全等吗?ACBACBABCED作法:(1)画AB=AB;(2)在AB的同旁画DAB=A,EBA=B,AD,BE相交于点C.想一想:从中你能发现什么规律?知识要点“角边角”判定方法u文字语言:有两角和它们夹边对应相等的两个三角形全等(简写成“角边角”或“ASA”).u几何语言:A=A(已知),),AB=A B(已知),),B=B(已知),),在ABC和和A B C中,ABC A B C(ASA).AB CA B C 例1 已知:ABCDCB,ACB DBC,求证:ABCDCBABCDCB(已知),BCCB(公共边),ACBDBC(已知证明:在ABC和DCB中,ABCDCB(ASA).典例精析BCAD 判定方法:两角和它们的夹边对应相等两个三角形全等 例2 如图,点D在AB上,点E在AC上,AB=AC,B=C,求证:AD=AE.ABCDE分析:证明ACDABE,就可以得出AD=AE.证明:在ACD和ABE中,A=A(公共角),),AC=AB(已知),),C=B(已知),),ACDABE(ASA),AD=AE.试一试:若三角形的两个内角分别是60和30,且30所对的边为3cm,你能画出这个三角形吗?6030用“角角边”判定三角形全等二合作探究6030思考:这里的条件与1中的条件有什么相同点与不同点?你能将它转化为1中的条件吗?90例3:在ABC和DEF中,AD,B E,BC=EF.求证:ABCDEFBE,BCEF,CF.证明:在ABC中,A+B+C180.ABCDEF(ASA).C180AB.同理同理 F180DE.又又 AD,B E,CF.在ABC和DEF中,两角和其中一角的对边对应相等的两个三角形全等.简写成“角角边”或“AAS”.归纳总结A=A(已知),),B=B(已知),),AC=AC(已知),),在ABC和和ABC中,ABC A B C(AAS).AB CA B C 学以致用:如图,小明不慎将一块三角形模具打碎为三块,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具吗?如果可以,带哪块去合适?你能说明其中理由吗?321答:带1去,因为有两角且夹边相等的两个三角形全等.例4 如图,已知:在ABC中,BAC90,ABAC,直线m经过点A,BD直线m,CE直线m,垂足分别为点D、E.求证:(1)BDAAEC;证明:(1)BDm,CEm,ADBCEA90,ABDBAD90.ABAC,BADCAE90,ABDCAE.在BDA和AEC中,ADB=CEA=90,ABDCAE,ABAC,BDAAEC(AAS).(2)DEBDCE.BDAE,ADCE,DEDAAEBDCE.证明:BDAAEC,方法总结:利用全等三角形可以解决线段之间的关系,比如线段的相等关系、和差关系等,解决问题的关键是运用全等三角形的判定与性质进行线段之间的转化 1.ABC和DEF中,ABDE,BE,要使ABCDEF,则下列补充的条件中错误的是()AACDF BBCEF CAD DCF 2.在ABC与ABC中,已知A44,B67,C69,A44,且ACAC,那么这两个三角形()A一定不全等 B一定全等 C不一定全等 D以上都不对 当堂练习当堂练习A B 3.如图,已知ACB=DBC,ABC=CDB,判别下面的两个三角形是否全等,并说明理由.不全等,因为BC虽然是公共边,但不是对应边.ABCDABCDEF4.如图ACB=DFE,BC=EF,那么应补充一个条件 ,才能使ABCDEF(写出一个即可).B=E或A=D或 AC=DF(ASA)(AAS)(SAS)AB=DE可以吗?可以吗?ABDE5.已知:如图,ABBC,ADDC,1=2,求证:AB=AD.ACDB1 2证明:ABBC,ADDC,B=D=90.在ABC和ADC中,1=2 (已知),),B=D(已证),),AC=AC(公共边),),ABCADC(AAS),AB=AD.能力提升:已知:如图,ABC ABC,AD、A D 分别是ABC 和ABC的高.试说明AD AD,并用一句话说出你的发现.ABCDA B C D 解:因为ABC ABC,所以AB=AB(全等三角形对应边相等),ABD=ABD(全等三角形对应角相等).因为ADBC,ADBC,所以ADB=ADB.在ABD和ABD中,ADB=ADB(已证),ABD=ABD(已证),AB=AB(已证),所以ABDABD.所以AD=AD.ABCDA B C D 全等三角形对应边上的高也相等.课堂小结课堂小结 边角边角 角 边内 容有两角及夹边对应相等的两个三角形全等(即“ASA”)有两角及其中一角的对边对应相等的两个三角形全等(即“AAS”)应 用为证明线段和角相等提供了新的证法注 意注意“角角边”、“角边角”中两角与边的对应关系此课件下载可自行编辑修改,供参考!感谢您的支持,我们努力做得更好!

    注意事项

    本文(优质课角边角”“角角边”课件.ppt)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开