欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    周期函数分解为傅里叶级数.ppt

    • 资源ID:79050310       资源大小:337KB        全文页数:32页
    • 资源格式: PPT        下载积分:11.9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要11.9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    周期函数分解为傅里叶级数.ppt

    12.2 12.2 周期函数分解为傅里叶周期函数分解为傅里叶级数级数一、周期函数一、周期函数f(t)=f(t+kT)T为周期函数为周期函数f(t)的周期,的周期,k=0,1,2,如果给定的周期函数满足狄里赫利条件,它就如果给定的周期函数满足狄里赫利条件,它就能展开成一个收敛的能展开成一个收敛的傅里叶级数傅里叶级数。电路中的非正弦周期量都能满足这个条件。电路中的非正弦周期量都能满足这个条件。二、傅里叶级数的两种形式二、傅里叶级数的两种形式1、第一种形式、第一种形式式中:式中:K=1,2,3系数的计算公式系数的计算公式2、第二种形式、第二种形式A0称为周期函数的称为周期函数的恒定分量恒定分量(或直流分量);(或直流分量);A1mcos(1t+1)称为称为1次谐波次谐波(或基波分量),(或基波分量),其周期或频率与原周期函数相同;其周期或频率与原周期函数相同;其他各项统称为其他各项统称为高次谐波高次谐波,即即2次、次、3次、次、4次、次、3、两种形式系数之间的关系、两种形式系数之间的关系第一种形式第一种形式第二种形式第二种形式A0=a0ak=Akmcoskbk=-Akmsink4、傅里叶分解式的数学、电气意义、傅里叶分解式的数学、电气意义+-傅氏分解傅氏分解A0U1U2+-u(t)u(t)分解后的电源相当于无限个电压源串联分解后的电源相当于无限个电压源串联对于电路分析应用的方法是对于电路分析应用的方法是叠加定理叠加定理三、三、f(t)的频谱的频谱傅里叶级数虽然详尽而又准确地表达了周期傅里叶级数虽然详尽而又准确地表达了周期函数分解的结果,但函数分解的结果,但不很直观不很直观。为了表示一个周期函数分解为傅氏级数后包为了表示一个周期函数分解为傅氏级数后包含哪些频率分量以及各分量所占含哪些频率分量以及各分量所占“比重比重”,用长度与各次谐波振幅大小相对应的线段,用长度与各次谐波振幅大小相对应的线段,按频率的高低顺序把它们依次排列起来,按频率的高低顺序把它们依次排列起来,得到的图形称为得到的图形称为f(t)的的频谱频谱。1、幅度频谱、幅度频谱各次谐波的振幅用相应线段依次排列。各次谐波的振幅用相应线段依次排列。2、相位频谱、相位频谱把各次谐波的初相用相应线段依次排列。把各次谐波的初相用相应线段依次排列。OAkmk14131211例:求周期性矩形信号的傅里叶级数展开式及其频谱例:求周期性矩形信号的傅里叶级数展开式及其频谱Of(t)t1tEm-Em2T解:解:f(t)在第一个周期内的表达式为在第一个周期内的表达式为f(t)=Em-Em根据公式计算系数根据公式计算系数0Of(t)t1tEm-Em2TOf(t)t1tEm-Em2T=0当当k为偶数时:为偶数时:cos(k)=1bk=0当当k为奇数时:为奇数时:cos(k)=-1代入求得代入求得当当k为偶数时:为偶数时:cos(k)=1bk=0当当k为奇数时:为奇数时:cos(k)=-1Of(t)Em-Em1t图形曲线分析图形曲线分析:Of(t)Em-Em1t取到取到11次谐波时合成的曲线次谐波时合成的曲线比较两个图可见,谐波项数取得越多,合成比较两个图可见,谐波项数取得越多,合成曲线就越接近于原来的波形。曲线就越接近于原来的波形。Of(t)t1tEm-Em2Tf(t)=Em-Em假设假设 Em=1,1t=/2,得,得取到取到11次谐波时,结果为次谐波时,结果为0.95;取到取到13次谐波时,结次谐波时,结果为果为1.05;取到取到35次谐波时,结果为次谐波时,结果为0.98,误差为误差为2%矩形信号矩形信号f(t)的频谱的频谱OAkmk171513113、频谱与非正弦信号特征的关系、频谱与非正弦信号特征的关系波形越接近正弦波,波形越接近正弦波,谐波成分越少;谐波成分越少;f(t)=10cos(314t+30)OAkmk111、偶函数、偶函数f(t)=f(-t)纵轴对称的性质纵轴对称的性质f(t)Otf(t)Ot四、非正弦函数波形特征与展开式的系数之间四、非正弦函数波形特征与展开式的系数之间的关系的关系可以证明:可以证明:bk=01、偶函数、偶函数纵轴对称的性质纵轴对称的性质f(t)=f(-t)展开式中只含有余弦项分量和直流分量展开式中只含有余弦项分量和直流分量f(t)=-f(-t)原点对称的性质原点对称的性质f(t)Otf(t)Ot2、奇函数、奇函数可以证明:可以证明:a0=0,ak=0原点对称的性质原点对称的性质f(t)=-f(-t)2、奇函数、奇函数展开式中只含有正弦项分量展开式中只含有正弦项分量满足满足 f(t)=-f(t+T/2),称为称为奇谐波函数奇谐波函数Of(t)tT3、奇谐波函数、奇谐波函数:f(t)=-f(t+T/2),叫做叫做 镜对称的性质镜对称的性质判断判断:利用镜对称的性质利用镜对称的性质 f(t)=-f(t+T/2)3、奇谐波函数、奇谐波函数可以证明:可以证明:a2k=b2k=0f(t)=展开式中只含有奇次谐波分量展开式中只含有奇次谐波分量f(t)Ot判断下面波形的展开式特点判断下面波形的展开式特点f(t)是奇函数是奇函数展开式中只含有正弦分量展开式中只含有正弦分量f(t)又是奇谐波函数又是奇谐波函数展开式中只含有奇次谐波展开式中只含有奇次谐波f(t)=系数系数Akm与计时起点无关(但与计时起点无关(但k是有关的),是有关的),这是因为构成非正弦周期函数的各次谐波的振幅这是因为构成非正弦周期函数的各次谐波的振幅以及各次谐波对该函数波形的相对位置总是一定的,以及各次谐波对该函数波形的相对位置总是一定的,并不会因计时起点的变动而变动;并不会因计时起点的变动而变动;因此,计时起点的变动只能使各次谐波的初相作因此,计时起点的变动只能使各次谐波的初相作相应地改变。相应地改变。由于系数由于系数ak和和bk与初相与初相k有关,所以它们也随计有关,所以它们也随计时起点的改变而改变。时起点的改变而改变。4、系数和计时起点的关系、系数和计时起点的关系由于系数由于系数ak和和bk与计时起点的选择有关,所以与计时起点的选择有关,所以函数是否为奇函数或偶函数可能与计时起点的选择函数是否为奇函数或偶函数可能与计时起点的选择有关。有关。但是,函数是否为奇谐波函数却与计时起点但是,函数是否为奇谐波函数却与计时起点无关。无关。因此适当选择计时起点有时会使函数的分解因此适当选择计时起点有时会使函数的分解简化。简化。4、系数和计时起点的关系、系数和计时起点的关系例:已知某信号半周期的波形,在下列不同条件下例:已知某信号半周期的波形,在下列不同条件下画出整个周期的波形画出整个周期的波形Of(t)t1、只含有余弦分量、只含有余弦分量2、只含有正弦分量、只含有正弦分量3、只含有奇次谐波分量、只含有奇次谐波分量Of(t)t1、只含有余弦分量、只含有余弦分量f(t)应是偶函数应是偶函数关于纵轴对称关于纵轴对称Of(t)t2、只含有正弦分量、只含有正弦分量f(t)应是奇函数应是奇函数关于原点对称关于原点对称Of(t)t3、只含有奇次谐波分量、只含有奇次谐波分量f(t)应是奇谐波函数应是奇谐波函数镜象对称镜象对称

    注意事项

    本文(周期函数分解为傅里叶级数.ppt)为本站会员(wuy****n92)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开