研究性学习课题:数学发展的历史.ppt
高一(高一(7)班)班课题组课题组研究性学习研究性学习课课题:数学发展的历史题:数学发展的历史指导教师:黄夏秋指导教师:黄夏秋组组长:彭森鑫长:彭森鑫成成员:兰克清员:兰克清钟水玲钟水玲钟丽英钟丽英雷玉婷雷玉婷连艳连艳数学在实际需要的基础之上产生并发展起数学在实际需要的基础之上产生并发展起来的它经经历了不同时期的过渡,才逐来的它经经历了不同时期的过渡,才逐渐变的完善起来渐变的完善起来不同时期的数学有其特点,直到现阶段,不同时期的数学有其特点,直到现阶段,数学仍然在不断发展随着实践带来新的数学仍然在不断发展随着实践带来新的发展发展数学素养包括数学科学知识、数学能力和数学思想素养三个方面。形成数学素养的关键是在数学教育中让学生理解数学中蕴涵的精神、思想、观念等内容,并培养他们运用数学的思想和方法去处理数学问题和现实问题的意识。数学科学知识都是前人科学研究的成果,将数学史融入数学教学中,使学生在历史背景或框架中学习数学科学知识,可以使学生更准确地理解数学概念和数学理论,并从数学史中了解数学家的工作方法,体会数学家的思维方式,从中汲取营养,形成主动的学习态度、创新的人格品质,激发出新的思想火花,创造出新的数学方法,顽强地攻克数学问题,提高数学思维能力。一些成功人士往往把学生时代所学到的那些具体的数学知识忘得一干二净,但那些铭刻于脑海中的数学精神和数学思想方法,以及由此培养出来的数学能力却长期地在他们的生活和工作中发挥着重要作用研研究究内内容容数学史的研究对象数学史的研究对象数学史的分期数学史的分期数学史的发展数学史的发展几次重大的思想方法突破几次重大的思想方法突破中外著名数学家中外著名数学家数学发展的意义及特点数学发展的意义及特点总结总结数学史的研究对象数学史的研究对象数学史是研究数学科学发生发展及其规律的科数学史是研究数学科学发生发展及其规律的科学,简单地说就是研究数学的历史。它不仅追溯数学,简单地说就是研究数学的历史。它不仅追溯数学内容、思想和方法的演变、发展过程,而且还探学内容、思想和方法的演变、发展过程,而且还探索影响这种过程的各种因素,以及历史上数学科学索影响这种过程的各种因素,以及历史上数学科学的发展对人类文明所带来的影响。因此,数学史研的发展对人类文明所带来的影响。因此,数学史研究对象不仅包括具体的数学内容,而且涉及历史究对象不仅包括具体的数学内容,而且涉及历史学、哲学、文化学、宗教等社会科学与人文科学内学、哲学、文化学、宗教等社会科学与人文科学内容,是一门交叉性学科容,是一门交叉性学科数学史研究的任务在于,弄清数学发展过数学史研究的任务在于,弄清数学发展过程中的基本史实,再现其本来面貌,同时透过程中的基本史实,再现其本来面貌,同时透过这些历史现象对数学成就、理论体系与发展模这些历史现象对数学成就、理论体系与发展模式作出科学、合理的解释、说明与评价,进而式作出科学、合理的解释、说明与评价,进而探究数学科学发展的规律与文化本质。作为数探究数学科学发展的规律与文化本质。作为数学史研究的基本方法与手段,常有历史考证、学史研究的基本方法与手段,常有历史考证、数理分析、比较研究等方法。数理分析、比较研究等方法。学史既属史学领域,又属数学科学领域,学史既属史学领域,又属数学科学领域,因此,数学史研究既要遵循史学规律,又要遵因此,数学史研究既要遵循史学规律,又要遵循数理科学的规律。根据这一特点,可以将数循数理科学的规律。根据这一特点,可以将数理分析作为数学史研究的特殊的辅助手段,在理分析作为数学史研究的特殊的辅助手段,在缺乏史料或史料真伪莫辨的情况下,站在现代缺乏史料或史料真伪莫辨的情况下,站在现代数学的高度,对古代数学内容与方法进行数学数学的高度,对古代数学内容与方法进行数学原理分析,以达到正本清源、理论概括以及提原理分析,以达到正本清源、理论概括以及提出历史假说的目的。数理分析实际上是出历史假说的目的。数理分析实际上是“古古”与与“今今”间的一种联系。间的一种联系。数学发展具有阶段性,因此研究者根据一数学发展具有阶段性,因此研究者根据一定的原则把数学史分成若干时期。目前学术界定的原则把数学史分成若干时期。目前学术界通常将数学发展划分为以下五个时期:通常将数学发展划分为以下五个时期:1数学萌芽期(公元前数学萌芽期(公元前600年以前);年以前);2初等数学时期(公元前初等数学时期(公元前600年至年至17世纪中世纪中叶);叶);3变量数学时期(变量数学时期(17世纪中叶至世纪中叶至19世纪世纪20年年代);代);4近代数学时期(近代数学时期(19世纪世纪20年代至第二次世年代至第二次世界大战);界大战);5现代数学时期(现代数学时期(20世纪世纪40年代以来)。年代以来)。数学史的发展数学史的发展古代数学史:古代数学史:古希腊曾有人写过几何学史,未能流传下古希腊曾有人写过几何学史,未能流传下来。来。5世纪普罗克洛斯对欧几里得几何原本第世纪普罗克洛斯对欧几里得几何原本第一卷的注文中还保留有一部分资料。一卷的注文中还保留有一部分资料。中世纪阿拉伯国家的一些传记作品和数学著作中世纪阿拉伯国家的一些传记作品和数学著作中,讲述到一些数学家的生平以及其他有关数学史的材料。中,讲述到一些数学家的生平以及其他有关数学史的材料。12世纪时,古希腊和中世纪阿拉伯数学书籍传世纪时,古希腊和中世纪阿拉伯数学书籍传入西欧。这些著作的翻译既是数学研究,也是对古典数学入西欧。这些著作的翻译既是数学研究,也是对古典数学著作的整理和保存。著作的整理和保存。近代西欧各国的数学史近代西欧各国的数学史:是从是从18世纪,由世纪,由J.蒙蒂克拉、蒙蒂克拉、C.博絮埃、博絮埃、A.C.克斯特纳同时开始,而以蒙蒂克斯特纳同时开始,而以蒙蒂克拉克拉1758年出版的数学史(年出版的数学史(17991802年又经年又经J.de拉朗德增补)为代表。从拉朗德增补)为代表。从19世纪末叶起,研究数学史的人逐渐增多世纪末叶起,研究数学史的人逐渐增多,断代史和分科史的研究也逐渐展开断代史和分科史的研究也逐渐展开,1945年以后,更有了新的发展。年以后,更有了新的发展。19世纪末叶以后的数学史研究可以分为下述几世纪末叶以后的数学史研究可以分为下述几个方面。个方面。通史研究代表作可以举出通史研究代表作可以举出M.B.康托尔的数学史讲义康托尔的数学史讲义古埃及和巴比伦数学史把巴比伦楔形文字泥板算书和古埃及纸古埃及和巴比伦数学史把巴比伦楔形文字泥板算书和古埃及纸草算书译成现代文字是艰难的工作。草算书译成现代文字是艰难的工作。范范德德瓦尔登的科学的觉醒瓦尔登的科学的觉醒(1954)一书,则又加进一书,则又加进古希腊数学史,成为古代世界数学史的权威性著作之一。古希腊数学史,成为古代世界数学史的权威性著作之一。断代史和分科史研究德国数学家(断代史和分科史研究德国数学家(C.)F.克莱因著的克莱因著的19世纪数学发展世纪数学发展史讲义史讲义(19261927)一书,是断代体近现代数学史研究的开始,它成书于一书,是断代体近现代数学史研究的开始,它成书于20世纪,但其中所反映的对数学的看法却大都是世纪,但其中所反映的对数学的看法却大都是19世纪的。直到世纪的。直到1978年法国年法国数学家数学家J.迪厄多内所写的迪厄多内所写的17001900数学史概论出版之前,断代体数学数学史概论出版之前,断代体数学史专著并不多,但却有(史专著并不多,但却有(C.H.)H.外尔写的半个世纪的数学之类的著名外尔写的半个世纪的数学之类的著名论文。论文。古希腊数学史许多古希腊数学家的著作被译成现代文字古希腊数学史许多古希腊数学家的著作被译成现代文字历代数学家的传记以及他们的全集与选集的整理和出版这是数学史历代数学家的传记以及他们的全集与选集的整理和出版这是数学史研究的大量工作之一。此外还有多种数学经典论著选读出现,辑录了历代研究的大量工作之一。此外还有多种数学经典论著选读出现,辑录了历代数学家成名之作的珍贵片断。数学家成名之作的珍贵片断。专业性学术杂志最早出现于专业性学术杂志最早出现于19世纪末,现代则有国际科学史协会数学史世纪末,现代则有国际科学史协会数学史分会主编的国际数学史杂志。分会主编的国际数学史杂志。中国数学史中国数学史:中国以历史传统悠久而著称于世界,在历代正史的律历志中国以历史传统悠久而著称于世界,在历代正史的律历志“备数备数”条内常常论述到数学的作用和数学的历史。例如较早的汉书条内常常论述到数学的作用和数学的历史。例如较早的汉书律历志说律历志说数学是数学是“推历、生律、推历、生律、制器、制器、规圆、矩方、权重、衡平、准绳、嘉量,探赜规圆、矩方、权重、衡平、准绳、嘉量,探赜索稳索稳,钩深致远钩深致远,莫不用焉莫不用焉”。隋书。隋书律历志记述了圆周率计算的历史,律历志记述了圆周率计算的历史,记载了祖冲之的光辉成就。历代正史列传中,有时也给出了数学家的传记载了祖冲之的光辉成就。历代正史列传中,有时也给出了数学家的传记。正史的经籍志则记载有数学书目。记。正史的经籍志则记载有数学书目。数学发展史上的三次危机数学发展史上的三次危机无理数的发现无理数的发现第一次数学危机第一次数学危机无穷小是零吗?无穷小是零吗?第二次数学危机第二次数学危机18世纪,微分法和积分法在生产世纪,微分法和积分法在生产和实践上都有了广泛而成功的应用和实践上都有了广泛而成功的应用悖论的产生悖论的产生-第三次数学危机第三次数学危机数学史上的第三次危机,是由数学史上的第三次危机,是由1897年的突然冲击而出现的年的突然冲击而出现的1.承认承认“无理数无理数”是对是对“万物皆数万物皆数”的思想解放的思想解放古希腊有一个毕达哥拉斯学派,是一个研究数学、古希腊有一个毕达哥拉斯学派,是一个研究数学、科学和哲学的团体。他们认为科学和哲学的团体。他们认为“数数”是万物的本源,是万物的本源,是数学严密性和次序性的唯一依据,是在宇宙体系里是数学严密性和次序性的唯一依据,是在宇宙体系里控制着自然的永恒关系,数是世界的准则和关系,是控制着自然的永恒关系,数是世界的准则和关系,是决定一切事物的,决定一切事物的,“数统治着宇宙数统治着宇宙”,支配着整个自,支配着整个自然界和人类社会。然界和人类社会。但是学派中一个叫希帕索斯的学生但是学派中一个叫希帕索斯的学生在研究在研究1与与2的比例中项时,发现没有一个能用整数比的比例中项时,发现没有一个能用整数比例写成的数可以表示它。无理数的发现推翻了毕达哥例写成的数可以表示它。无理数的发现推翻了毕达哥拉斯等人的信条,打破了所谓给定任何两个线段,必拉斯等人的信条,打破了所谓给定任何两个线段,必定能找到第三个线段使得给定的线段都是这个线段的定能找到第三个线段使得给定的线段都是这个线段的整数倍。整数倍。2微积分的产生是第二次思想解放微积分的产生是第二次思想解放第二次数学危机源于极限概念的提出。微积分第二次数学危机源于极限概念的提出。微积分的问题,实际上就是解决连续与极限的问题牛的问题,实际上就是解决连续与极限的问题牛顿在发明微积分的时候,顿在发明微积分的时候,牛顿合理地设想:牛顿合理地设想:t越小,这个平均速度应当越接近物体在时刻越小,这个平均速度应当越接近物体在时刻t时的时的瞬时速度。这一新的数学方法,但由于它逻辑上瞬时速度。这一新的数学方法,但由于它逻辑上的不完备也使贝克莱主教曾猛烈地攻击牛顿的微的不完备也使贝克莱主教曾猛烈地攻击牛顿的微分概念。分概念。3非欧几何的诞生是第三次思想解放非欧几何的诞生是第三次思想解放希腊人在几何学上取得很大成就,希腊人在几何学上取得很大成就,最典型的是几何原本。最典型的是几何原本。几何原本从五个公理、五个公设几何原本从五个公理、五个公设出发推演出有关的数学问题,这就给出发推演出有关的数学问题,这就给了人们一个价值尺度,一把尺子。非了人们一个价值尺度,一把尺子。非欧几何的创建打破了欧几何的创建打破了2000多年来欧氏多年来欧氏几何一统天下的局面,从根本上革新几何一统天下的局面,从根本上革新和拓宽了人们对几何学观念的认识。和拓宽了人们对几何学观念的认识。4罗索悖论引出的数学基础研究是第罗索悖论引出的数学基础研究是第四次思想解放四次思想解放,MGEOo,MGEOoGIA-,GGIA-,G第三次危机,涉及到了第三次危机,涉及到了“数学自身的数学自身的基础是什么基础是什么”的根本问题。它的起因的根本问题。它的起因是是19世纪的弗雷格根据康托尔创立的世纪的弗雷格根据康托尔创立的集合论思想撰写一本算术基础,集合论思想撰写一本算术基础,其主要思想是把算术的基础全部归结其主要思想是把算术的基础全部归结为逻辑,以期能建立:数学为逻辑,以期能建立:数学算术算术逻辑的模式,筑起数学的大厦。逻辑的模式,筑起数学的大厦。中外著名数学家v祖冲之在数学上的杰出成就,是祖冲之在数学上的杰出成就,是关于圆周率的计算关于圆周率的计算祖冲之在前人成祖冲之在前人成就的基础上,经过刻苦钻研,反复演就的基础上,经过刻苦钻研,反复演算,求出算,求出3.1415926与与3.1415927之之间。并得出了间。并得出了分数形式的近似值,分数形式的近似值,取取为约率为约率,取,取为密率,其中为密率,其中取六位取六位小数是小数是3.141929,它是分子分母在,它是分子分母在1000以内最接近以内最接近值的分数。祖冲之值的分数。祖冲之还与他的儿子祖暅(也是我国著名的还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了数学家)一起,用巧妙的方法解决了球体体积的计算。他们当时采用的一球体体积的计算。他们当时采用的一条原理是:条原理是:幂势既同,则积不容异。幂势既同,则积不容异。了纪念祖氏父子发现这一原理的重了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为大贡献,大家也称这原理为祖暅原祖暅原理理。打印打印祖冲之祖冲之毕达哥拉斯毕达哥拉斯(Pythagoras,572BC?497BC?),古希腊数学家、哲学家。古希腊数学家、哲学家。毕达毕达哥拉斯和他的学派在数学上有很多创造,尤哥拉斯和他的学派在数学上有很多创造,尤其对整数的变化规律感兴趣。例如,把其对整数的变化规律感兴趣。例如,把(除除其本身以外其本身以外)全部因数之和等于本身的数称全部因数之和等于本身的数称为完全数为完全数(如如6,28,496等等),而将本身,而将本身大于其因数之和的数称为盈数;将小于其因大于其因数之和的数称为盈数;将小于其因数之和的数称为亏数。他们还发现了数之和的数称为亏数。他们还发现了“直角直角三角形两直角边平方和等于斜边平方三角形两直角边平方和等于斜边平方”,西,西方人称之为毕达哥拉斯定理,我国称为勾股方人称之为毕达哥拉斯定理,我国称为勾股定理。定理。在几何学方面,毕达哥拉斯学派证在几何学方面,毕达哥拉斯学派证明了明了“三角形内角之和等于两个直角三角形内角之和等于两个直角”的论的论断;研究了黄金分割;发现了正五角形和相断;研究了黄金分割;发现了正五角形和相似多边形的作法;还证明了正多面体只有五似多边形的作法;还证明了正多面体只有五种种正四面体、正六面体、正八面体、正正四面体、正六面体、正八面体、正十二面体和正二十面体。十二面体和正二十面体。毕达哥拉斯毕达哥拉斯高斯()是德国数学家、物理高斯()是德国数学家、物理学家和天文学家学家和天文学家 高斯的学术地高斯的学术地位,历来为人们推崇得很高。他位,历来为人们推崇得很高。他有有“数学王子数学王子”、“数学家之王数学家之王”的美称、被认为是人类有史以的美称、被认为是人类有史以来来“最伟大的三位(或四位)数最伟大的三位(或四位)数学家之一学家之一”(阿基米德、牛顿、(阿基米德、牛顿、高斯或加上欧拉)。高斯的研究高斯或加上欧拉)。高斯的研究领域,遍及纯粹数学和应用数学领域,遍及纯粹数学和应用数学的各个领域,并且开辟了许多新的各个领域,并且开辟了许多新的数学领域,从最抽象的代数数的数学领域,从最抽象的代数数论到内蕴几何学,都留下了他的论到内蕴几何学,都留下了他的足迹足迹。高高斯斯1910年年11月月12日日,华华罗罗庚庚生生于于江江苏苏省省金金坛坛县县。他他上上完完初初中中一一年年级级后后,因因家家境境贫贫困困而而失失学学了了,只只好好替替父父母母站站柜柜台台,但但他他仍仍然然坚坚持持自自学学数数学学。经经过过自自己己不不懈懈的的努努力力,他他的的苏苏家家驹驹之之代代数数的的五五次次方方程程式式解解法法不不能能成成立立的的理理由由论论文文,被被清清华华大大学学数数学学系系主主任任熊熊庆庆来来教教授授发发现现,邀邀请请他他来来清清华华大大学学;华华罗罗庚庚被被聘聘为为大大学学教教师师,这这在在清清华华大大学学的的历历史史上上是是破破天天荒荒的的事事情情1936年年夏夏,已已经经是是杰杰出出数数学学家家的的华华罗罗庚庚,作作为为访访问问学学者者在在英英国国剑剑桥桥大大学学工工作作两两年年。他他怀怀着着强强烈烈的的爱爱国国热热忱忱,为为西西南南联联合合大大学学讲讲课课。华华罗罗庚庚十十分分注注意意数数学学方方法法在在工工农农业业生生产产中中的的直直接接应应用用。他他经经常常深深入入工工厂厂进进行行指指导导,进进行行数数学学应应用用普普及及工工作作,并并编编写写了了科科普普读读物物。华华罗罗庚庚还还是是一一位位数数学学教教育育家家,他他培培养养了了像像王王元元、陈陈景景润润、陆陆启启铿铿、杨杨乐乐、张张广广厚厚等等一一大大批批卓卓越越数数学学家家。华罗庚华罗庚(1)数学史的科学意义)数学史的科学意义每一门科学都有其发展的历史,作为历史上的每一门科学都有其发展的历史,作为历史上的科学,既有其历史性又有其现实性。其现实性首先科学,既有其历史性又有其现实性。其现实性首先表表现在科学概念与方法的延续性方面,今日的科学研现在科学概念与方法的延续性方面,今日的科学研究在某种程度上是对历史上科学传统的深化与发究在某种程度上是对历史上科学传统的深化与发展,或者是对历史上科学难题的解决,因此我们无展,或者是对历史上科学难题的解决,因此我们无法割裂科学现实与科学史之间的联系。数学科学具法割裂科学现实与科学史之间的联系。数学科学具有悠久的历史,与自然科学相比,数学更是积累性有悠久的历史,与自然科学相比,数学更是积累性科学,其概念和方法更具有延续性科学,其概念和方法更具有延续性科学史的现实科学史的现实性还表现在为我们今日的科学研究提供经验教训和性还表现在为我们今日的科学研究提供经验教训和历史借鉴同时,总结我国数学发展史上的经验教训,历史借鉴同时,总结我国数学发展史上的经验教训,对我国当今数学发展不无益处。对我国当今数学发展不无益处。数学史发展的意义及特点数学史发展的意义及特点“数学不仅是一种方法、一门艺术或一数学不仅是一种方法、一门艺术或一种语言,数学更主要是一门有着丰富内容的种语言,数学更主要是一门有着丰富内容的知识体系,其内容对自然科学家、社会科学知识体系,其内容对自然科学家、社会科学家、哲学家、逻辑学家和艺术家十分有用,家、哲学家、逻辑学家和艺术家十分有用,同时影响着政治家和神学家的学说同时影响着政治家和神学家的学说”。数学。数学已经广泛地影响着人类的生活和思想,是形已经广泛地影响着人类的生活和思想,是形成现代文化的主要力量。因而数学史是从一成现代文化的主要力量。因而数学史是从一个侧面反映的人类文化史,又是人类文明史个侧面反映的人类文化史,又是人类文明史的最重要的组成部分。美国数学史家的最重要的组成部分。美国数学史家m.克莱克莱因曾经说过因曾经说过:“一个时代的总的特征在很大程一个时代的总的特征在很大程度上与这个时代的数学活动密切相关。这种度上与这个时代的数学活动密切相关。这种关系在我们这个时代尤为明显关系在我们这个时代尤为明显”()数学史的文化意义()数学史的文化意义()数学发展史的特点()数学发展史的特点数学发展史是一个曲折漫长的过程,不同的数学发展史是一个曲折漫长的过程,不同的国家的数学在发展过程中有不同的特点国家的数学在发展过程中有不同的特点在发展过程中遇到过挫折与危机,但是数学在发展过程中遇到过挫折与危机,但是数学由浅显逐渐变的成熟正是因为危机才使更由浅显逐渐变的成熟正是因为危机才使更多的人在研究数学的时候少走弯路多的人在研究数学的时候少走弯路随着数学的发展,也涌现出了诸多的数学家,随着数学的发展,也涌现出了诸多的数学家,从而更家推动了数学的发展从而更家推动了数学的发展数学史的发展为其他学科的完善也起了一定数学史的发展为其他学科的完善也起了一定作用对其他科学知识有很大影响作用对其他科学知识有很大影响存在的问题存在的问题由于第一次参与这种活动,经验不足,在整个研究性学习过程中,工作安排会存在欠缺的地方。调查的范围还不够广,进行的采访和问卷调查数量还可能不够充分总结总结vv在数学发展这条漫长的道路上,很多数学发现在数学发展这条漫长的道路上,很多数学发现在数学发展这条漫长的道路上,很多数学发现在数学发展这条漫长的道路上,很多数学发现也越来越多从古代数学到现阶段的数学,诸多也越来越多从古代数学到现阶段的数学,诸多也越来越多从古代数学到现阶段的数学,诸多也越来越多从古代数学到现阶段的数学,诸多结论都普遍地应用于社会的各行各业,对生活及结论都普遍地应用于社会的各行各业,对生活及结论都普遍地应用于社会的各行各业,对生活及结论都普遍地应用于社会的各行各业,对生活及其他学科的学习有很大影响而使数学逐渐发展其他学科的学习有很大影响而使数学逐渐发展其他学科的学习有很大影响而使数学逐渐发展其他学科的学习有很大影响而使数学逐渐发展起来的那些伟人也付出了很大的心血起来的那些伟人也付出了很大的心血起来的那些伟人也付出了很大的心血起来的那些伟人也付出了很大的心血vv从此次对数学发展史的研究过程中,我们也学从此次对数学发展史的研究过程中,我们也学从此次对数学发展史的研究过程中,我们也学从此次对数学发展史的研究过程中,我们也学会了用科学,严谨的态度对待探究活动了解了会了用科学,严谨的态度对待探究活动了解了会了用科学,严谨的态度对待探究活动了解了会了用科学,严谨的态度对待探究活动了解了更多关于数学的知识学会了协作,同时也拓展更多关于数学的知识学会了协作,同时也拓展更多关于数学的知识学会了协作,同时也拓展更多关于数学的知识学会了协作,同时也拓展了思维在得到知识的同时又锻炼了自己是一了思维在得到知识的同时又锻炼了自己是一了思维在得到知识的同时又锻炼了自己是一了思维在得到知识的同时又锻炼了自己是一次难得的体验次难得的体验次难得的体验次难得的体验vv谢谢大家!谢谢大家!