281锐角三角函数(第1课时)课件.pptx
ABC“斜而未倒斜而未倒”BC=5.2mAB=54.5m意大利的伟大科学家意大利的伟大科学家伽俐略,曾在斜塔的顶伽俐略,曾在斜塔的顶层做过自由落体运动的实层做过自由落体运动的实验验.问题问题 为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌现测得斜水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌现测得斜坡与水平面所成角的度数是坡与水平面所成角的度数是30,为使出水口的高度为,为使出水口的高度为35m,那么需,那么需要准备多长的水管?要准备多长的水管?这个问题可以归结为,在这个问题可以归结为,在RtABC中,中,C90,A30,BC35m,求,求AB根据根据“在直角三角形中,在直角三角形中,30角所对的边等于斜边的一半角所对的边等于斜边的一半”,即,即可得可得AB2BC70m,也就是说,需要准备,也就是说,需要准备70m长的水管长的水管ABC 分析:分析:情情境境问问题题在上面的问题中,如果使出水口的高度为在上面的问题中,如果使出水口的高度为50m,那么需要准备多长的,那么需要准备多长的水管?水管?结论结论:在一个直角三角形中,如果一个锐角等于:在一个直角三角形中,如果一个锐角等于30,那么不管三角形的,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于大小如何,这个角的对边与斜边的比值都等于ABC50m30mB C AB2B C 250100 即在直角三角形中,当一个锐角等于即在直角三角形中,当一个锐角等于45时,不管这个直角三角形时,不管这个直角三角形的大小如何,这个角的对边与斜边的比都等于的大小如何,这个角的对边与斜边的比都等于 如图,任意画一个如图,任意画一个RtABC,使,使C90,A45,计算,计算A的对边与斜边的对边与斜边的比的比 ,你能得出什么结论?,你能得出什么结论?ABC综上可知,在一个综上可知,在一个RtABC中,中,C90,当,当A30时,时,A的对的对边与斜边的比都等于边与斜边的比都等于 ,是一个固定值;当,是一个固定值;当A45时,时,A的对的对边与斜边的比都等于边与斜边的比都等于 ,也是一个固定值,也是一个固定值.一般地,当一般地,当A 取其他一定度数的锐角时,它的对取其他一定度数的锐角时,它的对边与斜边的比是否也是一个固定值?边与斜边的比是否也是一个固定值?在图中,由于在图中,由于CC90,AA,所以,所以RtABCRtABC在直角三角形中,当锐角在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,的度数一定时,不管三角形的大小如何,A的对边与斜边的比也是一个固定值的对边与斜边的比也是一个固定值任意画任意画RtABC和和RtABC,使得,使得CC90,AA,那么那么 与与 有什么关系你能解释一下吗?有什么关系你能解释一下吗?探究探究ABCABC 如图,在如图,在RtABC中,中,C90,我们把锐角,我们把锐角A的对边与斜边的比的对边与斜边的比叫做叫做A的正弦的正弦(sine),记住),记住sinA 即即当当A30时,我们有时,我们有当当A45时,我们有时,我们有ABCcab对边对边斜边斜边在图中在图中A的对边记作的对边记作aB的对边记作的对边记作bC的对边记作的对边记作c 探究二:探究二:正正 弦弦 函函 数数例例1 如图,在如图,在RtABC中,中,C90,求,求sinA和和sinB的值的值解:解:(1)在)在RtABC中,中,因此因此(2)在)在RtABC中,中,因此因此ABCABC3413 例例 题题 示示 范范5练一练练一练1.判断对错判断对错:A10m6mBC1)如图如图 (1)sinA=()(2)sinB=()(3)sinA=0.6m ()(4)SinB=0.8 ()sinAsinA是一个比值(注意比的顺序),无单位;是一个比值(注意比的顺序),无单位;2)如图,如图,sinA=()2.2.在在RtABCRtABC中,锐角中,锐角A A的对边和斜边同时扩大的对边和斜边同时扩大 100 100倍,倍,sinAsinA的值(的值()A.A.扩大扩大100100倍倍 B.B.缩小缩小 C.C.不变不变 D.D.不能确定不能确定C练一练练一练3.如图如图ACB37300则则 sinA=_ .12根据下图,求根据下图,求sinA和和sinB的值的值ABC35 练习解:解:(1)在)在RtABC中,中,因此因此根据下图,求根据下图,求sinA和和sinB的值的值ABC125 练习解:解:(1)在)在RtABC中,中,因此因此根据下图,求根据下图,求sinB的值的值ABCn 练习解:解:(1)在)在RtABC中,中,因此因此m 练习如图,如图,RtABC中,中,C=90度,度,CDAB,图中,图中sinB可由哪可由哪两条线段比求得。两条线段比求得。DCBA解:在解:在RtABC中,中,在在RtBCD中,中,因为因为B=ACD,所以,所以 求一个角的正弦值,除了用定义直接求外,还可以求一个角的正弦值,除了用定义直接求外,还可以转化为求和它相等角的正弦值。转化为求和它相等角的正弦值。如图如图,C=90CDAB.sinB可以由哪两条线段之比可以由哪两条线段之比?想一想想一想若若C=5,CD=3,求求sinB的值的值.ACBD解解:B=ACD sinB=sinACD在在RtACD中,中,AD=sin ACD=sinB=4本节课你有什么收获呢?本节课你有什么收获呢?回味无穷小结 拓展1.1.锐角三角函数定义锐角三角函数定义:2.sinA2.sinA是是A A的函数的函数.ABCA的对边斜边斜边A的对边sinA=sinA=3.只有不断的思考只有不断的思考,才会有新的发现才会有新的发现;只有只有量的变化量的变化,才会有质的进步才会有质的进步.Sin300 =sin45=小结如图,如图,RtABC中,直角边中,直角边AC、BC小于斜边小于斜边AB,所以所以0sinA 1,0sinB 1,如果如果A B,则则BCAC,那么那么0 sinA sinB 1ABC11