高中数学总复习专题讲座三角函数式的化简与求值.doc
高中数学总复习专题讲座三角函数式的化简与求值高考要求 三角函数式的化简和求值是高考考查的重点内容之一 通过本节的学习使考生掌握化简和求值问题的解题规律和途径,特别是要掌握化简和求值的一些常规技巧,以优化我们的解题效果,做到事半功倍 重难点归纳 1 求值问题的基本类型 给角求值,给值求值,给式求值,求函数式的最值或值域,化简求值 2 技巧与方法 要寻求角与角关系的特殊性,化非特角为特殊角,熟练准确地应用公式 注意切割化弦、异角化同角、异名化同名、角的变换等常规技巧的运用 对于条件求值问题,要认真寻找条件和结论的关系,寻找解题的突破口,很难入手的问题,可利用分析法 求最值问题,常用配方法、换元法来解决 典型题例示范讲解 例1不查表求sin220°+cos280°+cos20°cos80°的值 命题意图 本题主要考查两角和、二倍角公式及降幂求值的方法,对计算能力的要求较高 知识依托 熟知三角公式并能灵活应用 错解分析 公式不熟,计算易出错 技巧与方法 解法一利用三角公式进行等价变形;解法二转化为函数问题,使解法更简单更精妙,需认真体会 解法一 sin220°+cos280°+sin220°cos80°= (1cos40°)+ (1+cos160°)+ sin20°cos80°=1cos40°+cos160°+sin20°cos(60°+20°)=1cos40°+ (cos120°cos40°sin120°sin40°)+sin20°(cos60°cos20°sin60°sin20°)=1cos40°cos40°sin40°+sin40°sin220°=1cos40°(1cos40°)= 解法二 设x=sin220°+cos280°+sin20°cos80°y=cos220°+sin280°cos20°sin80°,则x+y=1+1sin60°=,xy=cos40°+cos160°+sin100°=2sin100°sin60°+sin100°=0x=y=,即x=sin220°+cos280°+sin20°cos80°= 例2设关于x的函数y=2cos2x2acosx(2a+1)的最小值为f(a),试确定满足f(a)=的a值,并对此时的a值求y的最大值 命题意图 本题主要考查最值问题、三角函数的有界性、计算能力以及较强的逻辑思维能力 知识依托 二次函数在给定区间上的最值问题 错解分析 考生不易考查三角函数的有界性,对区间的分类易出错 技巧与方法 利用等价转化把问题化归为二次函数问题,还要用到配方法、数形结合、分类讲座等 解 由y=2(cosx)2及cosx1,1得 f(a)f(a)=,14a=a=2,+或2a1=,解得a=1,此时,y=2(cosx+)2+,当cosx=1时,即x=2k,kZ,ymax=5 例3已知函数f(x)=2cosxsin(x+)sin2x+sinxcosx(1)求函数f(x)的最小正周期;(2)求f(x)的最小值及取得最小值时相应的x的值;(3)若当x,时,f(x)的反函数为f1(x),求f-1(1)的值 命题意图 本题主要考查三角公式、周期、最值、反函数等知识,还考查计算变形能力,综合运用知识的能力 知识依托 熟知三角函数公式以及三角函数的性质、反函数等知识 错解分析 在求f-1(1)的值时易走弯路 技巧与方法 等价转化,逆向思维 解 (1)f(x)=2cosxsin(x+)sin2x+sinxcosx=2cosx(sinxcos+cosxsin)sin2x+sinxcosx=2sinxcosx+cos2x=2sin(2x+)f(x)的最小正周期T=(2)当2x+=2k,即x=k (kZ)时,f(x)取得最小值2 (3)令2sin(2x+)=1,又x,2x+,2x+=,则x=,故f-1(1)= 例4已知,cos()=,sin(+)=,求sin2的值_ 解法一 ,0 +,sin2=sin()+(+)=sin()cos(+)+cos()sin(+)解法二 sin()=,cos(+)=,sin2+sin2=2sin(+)cos()=sin2sin2=2cos(+)sin()=sin2= 学生巩固练习 1 已知方程x2+4ax+3a+1=0(a1)的两根均tan、tan,且,(),则tan的值是( )A B 2 C D 或22 已知sin=,(,),tan()= ,则tan(2)=_ 3 设(),(0,),cos()=,sin(+)=,则sin(+)=_ 4 不查表求值:5 已知cos(+x)=,(x),求的值 6 已知=,且k(kZ) 求的最大值及最大值时的条件 7 如右图,扇形OAB的半径为1,中心角60°,四边形PQRS是扇形的内接矩形,当其面积最大时,求点P的位置,并求此最大面积 8 已知cos+sin=,sin+cos的取值范围是D,xD,求函数y=的最小值,并求取得最小值时x的值 参考答案 1 解析 a1,tan+tan=4a0 tan+tan=3a+10,又、(,)、(,),则(,0),又tan(+)=,整理得2tan2=0 解得tan=2 答案 B2 解析 sin=,(,),cos=则tan=,又tan()=可得tan=,答案 3 解析 (),(0, ),又cos()= 答案 4 答案 2(kZ), (kZ)当即(kZ)时,的最小值为1 7 解 以OA为x轴 O为原点,建立平面直角坐标系,并设P的坐标为(cos,sin),则PS=sin 直线OB的方程为y=x,直线PQ的方程为y=sin 联立解之得Q(sin;sin),所以PQ=cossin 于是SPQRS=sin(cossin)=(sincossin2)=(sin2)=(sin2+cos2)= sin(2+) 0,2+ sin(2+)1 sin(2+)=1时,PQRS面积最大,且最大面积是,此时,=,点P为的中点,P() 8 解 设u=sin+cos 则u2+()2=(sin+cos)2+(cos+sin)2=2+2sin(+)4 u21,1u1 即D=1,1,设t=,1x1,1t x= 第8页 共8页