第27章相似三角形教案.doc
2721相似三角形的判定 相似三角形的判定(一) 教学任务分析教学目标知识与技能1、了解相似比的定义,掌握判定两个三角形相似的方法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。过程与方法2、培养学生的观察动手探究、归纳总结的能力,感受相似三角形与相似多边形;相似三角形与全等三角形的区别与联系,体验事物间特殊与一般的关系。情感态度3、 让学生经历从实验探究到归纳证明的过程,发展学生的合情推理能力。重点判定两个三角形相似的预备定理 难点探究两个三角形相似的预备定理的过程教学过程设计教学过程设计意图说明新课引入:复习相似多边形的性质、定义及相似多边形相似比的定义相似三角形的定义、相似三角形相似比的定义(相似比是带有顺序性和对应性的)及相似三角形的性质当k=1时,提出相似三角形与全等三角形的区别和联系从相似多边形的概念以旧引新,帮助学生建立新旧知识间的联系,体会事物间一般到特殊特殊到一般的关系。强调相似与全等之间的一般与特殊的关系提出问题:如图27·2-1,在ABC中,点D是边AB的中点,DEBC,DE交AC于点E ,ADE与ABC有什么关系?学生动手探究,小组合作,测量出两个三角形对应角、对应边的值,得到结论。分析:观察27·2-1易知ADE=ABC,AED=ACB,A=A,即两三角形三组对应角分别相等,又知AD=,只需引导学生证得AE=,DE=即可,即证明AE=EC。这样学生不难想到过E作EFAB。构造一个三角形与已知ADE全等。ADEABC,相似比为。延伸拓展问题:改变点D在AB上的位置,先让学生猜想ADE与ABC仍相似,然后再用几何画板演示验证。1.若D点为线段AB上任意一点, ADE与ABC有什么关系?2.若D点为AB延长线上任意一点, ADE与ABC有什么关系?归纳:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。ABCDE几何语言: DE BC ADE ABC (A型)BEDFGA(Z型)让学生经历“猜想探究推理证明”的过程,并通过特殊到一般的关系,最终归纳总结出结论。 突出结论的探索过程,重视实验操作度量和逻辑推理的有机结合。通过观察特殊平行条件(经过三角形一边的中点平行于另一边)下两三角形的相似关系,引导学生思考一般平行条件(平行于三角形一边的直线和其他两边或者两边的延长线相交)下两三角形的相似关系,进一步体会事物间特殊到一般的关系。通过几何画板演示,进一步验证猜想的结论,培养学生的实验探究意识。用三种语言来描述,促进学生更深刻理解定理给出两种典型的极具代表性的图形巩固练习:如图 已知如(图一)中DEBC,DFAC,(图二)中DEBCFG,请尽可能多地找出图中的相似三角形,并用符号表示。 ABCDFE ( 图一)BEDFGA(图二)运用两个三角形相似判定的预备定理进行相关证明,让学生在练习中熟悉定理以及两三角形相似的表示法。 课堂小结:说说你在本节课的收获。让学生及时回顾整理本节课所学的知识。帮助学生学会归纳,反思布置作业:1 必做题:P55习题27·2题12 选做题: P55习题27·2题4,5。3 备选题:1、如图,E是平行四边形ABCD的边BC的延长线上的一点,连结AE交CD于F,则图中共有相似三角形( ) A、1对B、2对C、3对D、4对分层次布置作业,让不同的学生在本节课中都有收获。2、如图,在ABC中,DEBC,AD=EC,DB=1cm,AE=4cm,BC=5cm,求DE的长 相似三角形的判定(二)教学目标知识与技能1初步掌握“三组对应边的比相等的两个三角形相似”的判定方法,以及“两组对应边的比相等且它们的夹角相等的两个三角形相似”的判定方法过程与方法经历两个三角形相似的探索过程,体验用类比、实验操作、分析归纳得出数学结论的过程;通过画图、度量等操作,培养学生获得数学猜想的经验,激发学生探索知识的兴趣,体验数学活动充满着探索性和创造性情感态度能够运用三角形相似的条件解决简单的问题重点1 掌握两种判定方法,会运用两种判定方法判定两个三角形相似难点2 (1)三角形相似的条件归纳、证明;(2)会准确的运用两个三角形相似的条件来判定三角形是否相似教学过程设计意图说明新课引入:1复习提问:(1) 两个三角形全等有哪些判定方法?(2) 我们学习过哪些判定三角形相似的方法?(3) 全等三角形与相似三角形有怎样的关系?(4) 如图,如果要判定ABC与ABC相似,是不是一定需要一一验证所有的对应角和对应边的关系?由相似与全等之间的关系引导出相似的判定方法。提出问题:(1)首先,由三角形全等的SSS判定方法,我们会想如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么能否判定这两个三角形相似呢?(2)带领学生画图探究;(3)【归纳】 三角形相似的判定方法1 如果两个三角形的三组对应边的比相等, 那么这两个三角形相似(4)提出问题:怎样证明这个命题是正确的呢?(5)教师带领学生探求证明方法提出问题:(1)由三角形全等的SAS判定方法,我们也会想如果一个三角形的两条边与另一个三角形的两条边对应成比例,那么能否判定这两个三角形相似呢?(2)让学生画图,自主展开探究活动(3)【归纳】 三角形相似的判定方法2 两个三角形的两组对应边的比相等,且它们的夹角相等,那么这两个三角形相似关于三角形相似的判定方法1“三组对应边的比相等的两个三角形相似”,教科书虽然给出了证明,但不要求学生自己证明,通过教师引导、讲解证明,使学生了解证明的方法,并复习前面所学过的有关知识,加深对判定方法的理解(2)判定方法1的探究是让学生通过作图展开的,我们在教学过程中,要通过从作图方法的迁移过程,让学生进一步感受,由特殊的全等三角形到一般相似三角形,以及类比认识新事物的方法(3)讲判定方法1时,要扣住“对应”二字,一般最短边与最短边,最长边与最长边是对应边(4)判定方法2一定要注意区别“夹角相等” 的条件,如果对应相等的角不是两条边的夹角,这两个三角形不一定相似,延伸拓展问题:例题讲解例1(教材P46例1)分析:判定两个三角形是否相似,可以根据已知条件,看是不是符合相似三角形的定义或三角形相似的判定方法,对于(1)由于是已知一对对应角相等及四条边长,因此看是否符合三角形相似的判定方法2“两组对应边的比相等且它们的夹角相等的两个三角形相似”,对于(2)给的几个条件全是边,因此看是否符合三角形相似的判定方法1“三组对应边的比相等的两个三角形相似”即可,其方法是通过计算成比例的线段得到对应边 解:略例2 (补充)已知:如图,在四边形ABCD中,B=ACD,AB=6,BC=4,AC=5,CD=,求AD的长分析:由已知一对对应角相等及四条边长,猜想应用“两组对应边的比相等且它们的夹角相等”来证明计算得出,结合B=ACD,证明ABCDCA,再利用相似三角形的定义得出关于AD的比例式,从而求出AD的长解:略(AD=)安排的两个例题,其中例1是教材P46的例1,此例题是为了巩固刚刚学习过的两种三角形相似的判定方法,(1)是复习巩固“两组对应边的比相等且它们的夹角相等的两个三角形相似”的判定方法;(2)是复习巩固“三组对应边的比相等的两个三角形相似” 的判定方法通过此例题要让学生掌握如何正确的选择三角形相似的判定方法 例2是补充的题目,它既运用了三角形相似的判定方法2,又运用了相似三角形的性质,有一点综合性,由于学生刚开始接触相似三角形的题目,而本节课的内容有较多,故此例题可以选讲巩固练习:1教材P4722如果在ABC中B=30°,AB=5,AC=4,在ABC中,B=30°AB=10,AC=8,这两个三角形一定相似吗?试着画一画、看一看? 3如图,ABC中,点D、E、F分别是AB、BC、CA的中点,求证:ABCDEF课堂练习2就是通过让学生联想、类比全等三角形中SSA条件下三角形的不确定性,来达到加深理解判定方法2的条件的目的的 课堂小结:说说你在本节课的收获。让学生及时回顾整理本节课所学的知识。帮助学生学会归纳,反思布置作业:1教材P471、32如图,ABAC=ADAE,且1=2,求证:ABCAED3已知:如图,P为ABC中线AD上的一点,且BD2=PDAD,求证:ADCCDP反思:相似三角形的判定(三)教学目标知识与技能经历两个三角形相似的探索过程,进一步发展学生的探究、交流能力过程与方法掌握“两角对应相等,两个三角形相似”的判定方法情感态度能够运用三角形相似的条件解决简单的问题重点三角形相似的判定方法3“两角对应相等,两个三角形相似”难点三角形相似的判定方法3的运用教学过程设计意图说明新课引入:1复习提问: (1)我们已学习过哪些判定三角形相似的方法?(2)如图,ABC中,点D在AB上,如果 AC2=ADAB,那么ACD与ABC相似吗?说说你的理由巩固旧知引出新知提出问题:(1)如(2)题图,ABC中,点D在AB上,如果ACD=B,那么ACD与ABC相似吗?引出课题 (2)教材P48的探究3 【归纳】 “两角对应相等,两个三角形相似”(1)在两个三角形中,只要满足两个对应角相等,那么这两个三角形相似,这是三角形相似中最常用的一个判定方法(2)公共角、对顶角、同角的余角(或补角)、同弧上的圆周角都是相等的,是判别两个三角形相似的重要依据(3)如果两个三角形是直角三角形, 则只要再找到一对锐角相等即可说明这两个三角形相似延伸拓展问题:例题讲解例1(教材P48例2)分析:要证PAPB=PCPD,需要证,则需要证明这四条线段所在的两个三角形相似由于所给的条件是圆中的两条相交弦,故需要先作辅助线构造三角形,然后利用圆的性质“同弧上的圆周角相等”得到两组角对应相等,再由三角形相似的判定方法3,可得两三角形相似证明:略(见教材P48例2)例2 (补充)已知:如图,矩形ABCD中,E为BC上一点,DFAE于F,若AB=4,AD=5,AE=6,求DF的长分析:要求的是线段DF的长,观察图形,我们发现AB、AD、AE和DF这四条线段分别在ABE和AFD中,因此只要证明这两个三角形相似,再由相似三角形的性质可以得到这四条线段对应成比例,从而求得DF的长由于这两个三角形都是直角三角形,故有一对直角相等,再找出另一对角对应相等,即可用“两角对应相等,两个三角形相似”的判定方法来证明这两个三角形相似解:略(DF=)例1是教材P48的例2,是一个圆中证相似的题目,这个题目比较简单,可以让学生来分析、让学生说出思维的方法、让学生自己写出证明过程并让学生掌握遇到等积式,应先将其化为比例式的方法例2是一个补充的题目,选择这个题目是希望学生通过这个题的学习,掌握利用三角形相似的知识来求线段长的方法,为下节课学习“27.2.2 相似三角形的应用举例”打基础巩固练习:1教材P49的练习1、22已知:如图,1=2=3,求证:ABCADE3下列说法是否正确,并说明理由(1)有一个锐角相等的两直角三角形是相似三角形;(2)有一个角相等的两等腰三角形是相似三角形通过让学生练习来达到加深理解判定方法3的条件的目的的 课堂小结:说说你在本节课的收获。让学生及时回顾整理本节课所学的知识。帮助学生学会归纳,反思布置作业:1 已知:如图,ABC 的高AD、BE交于点F求证:2已知:如图,BE是ABC的外接圆O的直径,CD是ABC的高(1)求证:ACBC=BECD; (2)若CD=6,AD=3,BD=8,求O的直径BE的长反思:27.2.2 相似三角形的应用举例教学目标知识与技能进一步巩固相似三角形的知识 过程与方法能够运用三角形相似的知识,解决不能直接测量物体的长度和高度(如测量金字塔高度问题、测量河宽问题、盲区问题)等的一些实际问题 情感态度通过把实际问题转化成有关相似三角形的数学模型,进一步了解数学建模的思想,培养分析问题、解决问题的能力重点运用三角形相似的知识计算不能直接测量物体的长度和高度难点灵活运用三角形相似的知识解决实际问题(如何把实际问题抽象为数学问题)教学过程设计意图说明新课引入:问:世界现存规模最大的金字塔位于哪个国家,叫什么金字塔?胡夫金字塔是埃及现存规模最大的金字塔,被喻为“世界古代七大奇观之一” 塔的个斜面正对东南西北四个方向,塔基呈正方形,每边长约230多米据考证,为建成大金字塔,共动用了10万人花了20年时间原高146.59米,但由于经过几千年的风吹雨打,顶端被风化吹蚀,所以高度有所降低在古希腊,有一位伟大的科学家叫泰勒斯一天,希腊国王阿马西斯对他说:“听说你什么都知道,那就请你测量一下埃及金字塔的高度吧!”,这在当时条件下是个大难题,因为是很难爬到塔顶的你知道泰勒斯是怎样测量大金字塔的高度的吗?由古典问题引出新知例题讲解 例1(教材P49例3测量金字塔高度问题) 分析:根据太阳光的光线是互相平行的特点,可知在同一时刻的阳光下,竖直的两个物体的影子互相平行,从而构造相似三角形,再利用相似三角形的判定和性质,根据已知条件,求出金字塔的高度解:略(见教材P49) 问:你还可以用什么方法来测量金字塔的高度?(如用身高等) 解法二:用镜面反射(如图,点A是个小镜子,根据光的反射定律:由入射角等于反射角构造相似三角形)(解法略) 例2(教材P50例4测量河宽问题) 分析:设河宽PQ长为x m ,由于此种测量方法构造了三角形中的平行截线,故可得到相似三角形,因此有,即再解x的方程可求出河宽解:略(见教材P50)问:你还可以用什么方法来测量河的宽度? 解法二:如图构造相似三角形(解法略) 例3(教材P50例5盲区问题)分析:略(见教材P50)解:略(见教材P51)运用三角形相似的知识计算不能直接测量物体的长度和高度通过把实际问题转化成有关相似三角形的数学模型,进一步了解数学建模的思想,培养分析问题、解决问题的能力巩固练习:1 在同一时刻物体的高度与它的影长成正比例在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为60米,那么高楼的高度是多少米?2 小明要测量一座古塔的高度,从距他2米的一小块积水处C看到塔顶的倒影,已知小明的眼部离地面的高度DE是1.5米,塔底中心B到积水处C的距离是40米.求塔高? 通过让学生练习来达到加深理解判定方法的条件的目的的 课堂小结:说说你在本节课的收获。让学生及时回顾整理本节课所学的知识。帮助学生学会归纳,反思布置作业:1 教材P51.练习1和练习22 如图,小明在打网球时,使球恰好能打过网,而且落在离网5米的位置上,求球拍击球的高度h(设网球是直线运动)小明想利用树影测量树高,他在某一时刻测得长为1m的竹竿影长0.9m,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,如图,他先测得留在墙上的影高1.2m,又测得地面部分的影长2.7m,他求得的树高是多少? 反思:27.2.3 相似三角形的周长与面积教学目标知识与技能1 理解并初步掌握相似三角形周长的比等于相似比,面积的比等于相似比的平方过程与方法2 能用三角形的性质解决简单的问题情感态度通过把实际问题转化成有关相似三角形的数学模型,进一步了解数学建模的思想,培养分析问题、解决问题的能力重点相似三角形的性质与运用难点相似三角形性质的灵活运用,及对“相似三角形面积的比等于相似比的平方”性质的理解,特别是对它的反向应用的理解,即对“由面积比求相似比”的理解教学过程设计意图说明新课引入:复习提问:已知: ABCABC,根据相似的定义,我们有哪些结论?(从对应边上看; 从对应角上看:)问:两个三角形相似,除了对应边成比例、对应角相等之外,我们还可以得到哪些结论? 由三角形相似的性质引出周长和面积的比提出问题:(1)如果两个三角形相似,它们的周长之间有什么关系?(2)如果两个三角形相似,它们的面积之间有什么关系?(3)两个相似多边形的周长和面积分别有什么关系?推导见教材P54结论相似三角形的性质: 性质1 相似三角形周长的比等于相似比 即:如果 ABC ABC,且相似比为k , 那么 性质2 相似三角形面积的比等于相似比的平方 即:如果 ABC ABC,且相似比为k , 那么 相似多边形的性质1相似多边形周长的比等于相似比相似多边形的性质2相似多边形面积的比等于相似比的平方理解并初步掌握相似三角形周长的比等于相似比,面积的比等于相似比的平方例题讲解 例 1(补充) 已知:如图:ABC ABC,它们的周长分别是 60 cm 和72 cm,且AB15 cm,BC24 cm,求BC、AB、AB、AC的长 分析:根据相似三角形周长的比等于相似比可以求出BC等边的长 解:略(此题学生可以让自己完成) 例2(教材P53例6) 分析:根据已知可以得到,又有夹角D=A,由相似三角形的判定方法2 可以得到这两个三角形相似,且相似比为,故DEF的周长和面积可求出 解:略(见教材P54)增强学生对相似三角形性质的灵活运用,及对“相似三角形面积的比等于相似比的平方”性质的理解特别是对“由面积比求相似比”的理解巩固练习:1教材P5412填空:(1)如果两个相似三角形对应边的比为35 ,那么它们的相似比为_,周长的比为_,面积的比为_(2)如果两个相似三角形面积的比为35 ,那么它们的相似比为_,周长的比为_(3)连结三角形两边中点的线段把三角形截成的一个小三角形与原三角形的周长比等于_,面积比等于_(4)两个相似三角形对应的中线长分别是6 cm和18 cm,若较大三角形的周长是42 cm ,面积是12 cm 2,则较小三角形的周长为_cm,面积为_cm23如图,在正方形网格上有A1B1C1和A2B2C2,这两个三角形相似吗?如果相似,求出A1B1C1和A2B2C2的面积比通过让学生练习来达到加深理解所学知识目的的 课堂小结:说说你在本节课的收获。让学生及时回顾整理本节课所学的知识。帮助学生学会归纳,反思布置作业:已知:如图,ABC中,DEBC,(1)若, 求的值; 求的值; 若,求ADE的面积;(2)若,过点E作EFAB交BC于F,求BFED的面积;(3)若, ,过点E作EFAB交BC于F,求BFED的面积反思:27. 3 位似(一)教学目标知识与技能了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的性质过程与方法掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小情感态度培养学生的美感重点位似图形的有关概念、性质与作图难点利用位似将一个图形放大或缩小教学过程设计意图说明新课引入:1 观察:在日常生活中,我们经常见到下面所给的这样一类相似的图形,它们有什么特征? 2问:已知:如图,多边形ABCDE,把它放大为原来的2倍,即新图与原图的相似比为2应该怎样做?你能说出画相似图形的一种方法吗?由三角形相似的性质引出周长和面积的比概念学习(1)位似图形:如果两个多边形不仅相似,而且对应顶点的连线相交于一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比(2)掌握位似图形概念,需注意:位似是一种具有位置关系的相似,所以两个图形是位似图形,必定是相似图形,而相似图形不一定是位似图形;两个位似图形的位似中心只有一个;两个位似图形可能位于位似中心的两侧,也可能位于位似中心的一侧;位似比就是相似比利用位似图形的定义可判断两个图形是否位似(3)位似图形首先是相似图形,所以它具有相似图形的一切性质位似图形是一种特殊的相似图形,它又具有特殊的性质,位似图形上任意一对对应点到位似中心的距离等于位似比(相似比)(4)两个位似图形的主要特征是:每对位似对应点与位似中心共线;不经过位似中心的对应线段平行(5)利用位似,可以将一个图形放大或缩小,其步骤见下面例题作图时要注意:首先确定位似中心,位似中心的位置可随意选择;确定原图形的关键点,如四边形有四个关键点,即它的四个顶点;确定位似比,根据位似比的取值,可以判断是将一个图形放大还是缩小;符合要求的图形不惟一,因为所作的图形与所确定的位似中心的位置有关(如例2),并且同一个位似中心的两侧各有一个符合要求的图形理解并初步掌握相似三角形周长的比等于相似比,面积的比等于相似比的平方例题讲解 例1(补充)如图,指出下列各图中的两个图形是否是位似图形,如果是位似图形,请指出其位似中心 分析:位似图形是特殊位置上的相似图形,因此判断两个图形是否为位似图形,首先要看这两个图形是否相似,再看对应点的连线是否都经过同一点,这两个方面缺一不可 解:图(1)、(2)和(4)三个图形中的两个图形都是位似图形,位似中心分别是图(1)中的点A ,图(2)中的点P和图(4)中的点O(图(3)中的点O不是对应点连线的交点,故图(3)不是位似图形,图(5)也不是位似图形) 例2(教材P61例题)把图1中的四边形ABCD缩小到原来的 分析:把原图形缩小到原来的,也就是使新图形上各顶点到位似中心的距离与原图形各对应顶点到位似中心的距离之比为12 作法一:(1)在四边形ABCD外任取一点O;(2)过点O分别作射线OA,OB,OC,OD;(3)分别在射线OA,OB,OC,OD上取点A、B、C、D,使得;(4)顺次连接AB、BC、CD、DA,得到所要画的四边形ABCD,如图2问:此题目还可以如何画出图形?作法二:(1)在四边形ABCD外任取一点O;(2)过点O分别作射线OA, OB, OC,OD;(3)分别在射线OA, OB, OC, OD的反向延长线上取点A、B、C、D,使得;(4)顺次连接AB、BC、CD、DA,得到所要画的四边形ABCD,如图3 作法三:(1)在四边形ABCD内任取一点O;(2)过点O分别作射线OA,OB,OC,OD;(3)分别在射线OA,OB,OC,OD上取点A、B、C、D,使得;(4)顺次连接AB、BC、CD、DA,得到所要画的四边形ABCD,如图4(当点O在四边形ABCD的一条边上或在四边形ABCD的一个顶点上时,作法略可以让学生自己完成 例1是补充的一个例题,通过辨别位似图形,巩固位似图形的概念,让学生理解位似图形必须满足两个条件:(1)两个图形是相似图形;(2)两个相似图形每对对应点所在的直线都经过同一点,二者缺一不可通过例2 的教学,使学生掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小讲解例2时,要注意引导学生能够用不同的方法画出所要求作的图形,要让学生通过作图理解符合要求的图形不惟一课堂练习1教材P611、22画出所给图中的位似中心3、把右图中的五边形ABCDE扩大到原来的2倍通过让学生练习来达到加深理解所学知识目的的 课堂小结:说说你在本节课的收获。让学生及时回顾整理本节课所学的知识。帮助学生学会归纳,反思布置作业:1教材P651、2、42已知:如图,ABC,画ABC,使ABCABC,且使相似比为1.5,要求(1)位似中心在ABC的外部;(2)位似中心在ABC的内部;(3)位似中心在ABC的一条边上;(4)以点C为位似中心 反思:27. 3 位似(二)教学目标知识与技能巩固位似图形及其有关概念过程与方法会用图形的坐标的变化来表示图形的位似变换,掌握把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律情感态度了解四种变换(平移、轴对称、旋转和位似)的异同,并能在复杂图形中找出这些变换重点用图形的坐标的变化来表示图形的位似变换难点把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律教学过程设计意图说明新课引入:1如图,ABC三个顶点坐标分别为A(2,3),B(2,1),C(6,2),(1)将ABC向左平移三个单位得到A1B1C1,写出A1、B1、C1三点的坐标;(2)写出ABC关于x轴对称的A2B2C2三个顶点A2、B2、C2的坐标;(3)将ABC绕点O旋转180°得到A3B3C3,写出A3、B3、C3三点的坐标2在前面几册教科书中,我们学习了在平面直角坐标系中,如何用坐标表示某些平移、轴对称、旋转(中心对称)等变换,相似也是一种图形的变换,一些特殊的相似(如位似)也可以用图形坐标的变化来表示3探究:(1)如图,在平面直角坐标系中,有两点A(6,3),B(6,0)以原点O为位似中心,相似比为,把线段AB缩小观察对应点之间坐标的变化,你有什么发现?(2)如图,ABC三个顶点坐标分别为A(2,3),B(2,1),C(6,2),以点O为位似中心,相似比为2,将ABC放大,观察对应顶点坐标的变化,你有什么发现?【归纳】 位似变换中对应点的坐标的变化规律:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k是学生会用图形的坐标的变化来表示图形的位似变换,掌握把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律难点学习(1)相似与轴对称、平移、旋转一样,也是图形之间的一个基本变换,因此一些特殊的相似(如位似)也可以用图形坐标的变化来表示(2)带领学生共同探究出位似变换中对应点的坐标的变化规律:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k(3)在平面直角坐标系中,用图形的坐标的变化来表示图形的位似变换的关键是要确定位似图形各个顶点的坐标,而不同方法得到的图形坐标是不同的如:已知:ABC三个顶点坐标分别为A(1,3),B(2,0),C(6,2),以点O为位似中心,相似比为2,将ABC放大,根据前面(2)总结的变化规律,点A的对应点A的坐标为(1×2,3×2),即A(2,6),或点A的对应点A的坐标为(1×(-2),3×(-2)),即A(-2,-6)类似地,可以确定其他顶点的坐标总结(或让学生自己总结)平移、轴对称、旋转和位似四种变换的异同:图形经过平移、旋转或轴对称的变换后,虽然对应位置改变了,但大小和形状没有改变,即两个图形是全等的;而图形放大或缩小(位似变换)之后是相似的让学生解四种变换(平移、轴对称、旋转和位似)的异同,并能在复杂图形中找出这些变换例题讲解例1(教材P63的例题)分析:略(见教材P63的例题分析)解:略(见教材P63的例题解答)问:你还可以得到其他图形吗?请你自己试一试!解法二:点A的对应点A的坐标为(-6×,6×),即A(3,-3)类似地,可以确定其他顶点的坐标(具体解法与作图略)例2(教材P64)在右图所示的图案中,你能找出平移、轴对称、旋转和位似这些变换吗? 分析:观察的角度不同,答案就不同如:它可以看作是一排鱼顺时针旋转45°角,连续旋转八次得到的旋转图形;它还可以看作位似中心是图形的正中心,相似比是4321的位似图形, 解:答案不惟一,略例1是教材P63的例题,它是在引导学生寻找出位似变换中对应点的坐标的变化规律后的一个用图形的坐标的变化来表示图形的位似变换的题目,其目的是巩固新知识,帮助学生加深理解用图形的坐标的变化来表示图形的位似变换知识,此题目应让学生用不同方法作出图形例2是教材P64的一个问题,它是“平移、轴对称、旋转和位似”四种变换的一个综合题目,所给的图案由于观察的角度不同,答案就会不同,因此应让学生自己来回答,并在顺利完成这个题目基础上,让学生自己总结出这四种变换的异同课堂练习1 教材P641、22 ABO的定点坐标分别为A(-1,4),B(3,2),O(0,0),试将ABO放大为EFO,使EFO与ABO的相似比为2.51,求点E和点F的坐标3 如图,AOB缩小后得到COD,观察变化前后的三角形顶点,坐标发生了什么变化,并求出其相似比和面积比通过让学生练习来达到加深理解所学知识目的的 课堂小结:说说你在本节课的收获。让学生及时回顾整理本节课所学的知识。帮助学生学会归纳,反思布置作业:1教材P653, P665、82请用平移、轴对称、旋转和位似这四种变换设计一种图案(选择的变换不限)3如图,将图中的ABC以A为位似中心,放大到1.5倍,请画出图形,并指出三个顶点的坐标所发生的变化 反思: