欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    高中数学复习专题讲座(第12讲)等差数列⒌缺仁行灾.doc

    • 资源ID:79340289       资源大小:928KB        全文页数:9页
    • 资源格式: DOC        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    高中数学复习专题讲座(第12讲)等差数列⒌缺仁行灾.doc

    题目 高中数学复习专题讲座等差数列、等比数列性质的灵活运用高考要求 等差、等比数列的性质是等差、等比数列的概念,通项公式,前n项和公式的引申 应用等差、等比数列的性质解题,往往可以回避求其首项和公差或公比,使问题得到整体地解决,能够在运算时达到运算灵活,方便快捷的目的,故一直受到重视 高考中也一直重点考查这部分内容 重难点归纳 1 等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题的既快捷又方便的工具,应有意识去应用 2 在应用性质时要注意性质的前提条件,有时需要进行适当变形 3 “巧用性质、减少运算量”在等差、等比数列的计算中非常重要,但用“基本量法”并树立“目标意识”,“需要什么,就求什么”,既要充分合理地运用条件,又要时刻注意题的目标,往往能取得与“巧用性质”解题相同的效果 典型题例示范讲解 例1已知函数f(x)= (x<2) (1)求f(x)的反函数f-1(x);(2)设a1=1, =f-1(an)(nN*),求an;(3)设Sn=a12+a22+an2,bn=Sn+1Sn是否存在最小正整数m,使得对任意nN*,有bn<成立?若存在,求出m的值;若不存在,说明理由 命题意图 本题是一道与函数、数列有关的综合性题目,着重考查学生的逻辑分析能力 知识依托 本题融合了反函数,数列递推公式,等差数列基本问题、数列的和、函数单调性等知识于一炉,结构巧妙,形式新颖,是一道精致的综合题 错解分析 本题首问考查反函数,反函数的定义域是原函数的值域,这是一个易错点,(2)问以数列为桥梁求an,不易突破 技巧与方法 (2)问由式子得=4,构造等差数列,从而求得an,即“借鸡生蛋”是求数列通项的常用技巧;(3)问运用了函数的思想 解 (1)设y=,x<2,x=,即y=f-1(x)= (x>0)(2),是公差为4的等差数列,a1=1, =+4(n1)=4n3,an>0,an= (3)bn=Sn+1Sn=an+12=,由bn<,得m>,设g(n)= ,g(n)= 在nN*上是减函数,g(n)的最大值是g(1)=5,m>5,存在最小正整数m=6,使对任意nN*有bn<成立 例2设等比数列an的各项均为正数,项数是偶数,它的所有项的和等于偶数项和的4倍,且第二项与第四项的积是第3项与第4项和的9倍,问数列lgan的前多少项和最大?(lg2=0 3,lg3=0 4)命题意图 本题主要考查等比数列的基本性质与对数运算法则,等差数列与等比数列之间的联系以及运算、分析能力 知识依托 本题须利用等比数列通项公式、前n项和公式合理转化条件,求出an;进而利用对数的运算性质明确数列lgan为等差数列,分析该数列项的分布规律从而得解 错解分析 题设条件中既有和的关系,又有项的关系,条件的正确转化是关键,计算易出错;而对数的运算性质也是易混淆的地方 技巧与方法 突破本题的关键在于明确等比数列各项的对数构成等差数列,而等差数列中前n项和有最大值,一定是该数列中前面是正数,后面是负数,当然各正数之和最大;另外,等差数列Sn是n的二次函数,也可由函数解析式求最值 解法一 设公比为q,项数为2m,mN*,依题意有化简得 设数列lgan前n项和为Sn,则Sn=lga1+lga1q2+lga1qn1=lga1n·q1+2+(n1)=nlga1+n(n1)·lgq=n(2lg2+lg3)n(n1)lg3=()·n2+(2lg2+lg3)·n可见,当n=时,Sn最大 而=5,故lgan的前5项和最大 解法二 接前,,于是lgan=lg108()n1=lg108+(n1)lg,数列lgan是以lg108为首项,以lg为公差的等差数列,令lgan0,得2lg2(n4)lg30,n=5 5 由于nN*,可见数列lgan的前5项和最大 例3等差数列an的前n项的和为30,前2m项的和为100,求它的前3m项的和为_ 解法一 将Sm=30,S2m=100代入Sn=na1+d,得 解法二 由知,要求S3m只需求ma1+,将得ma1+ d=70,S3m=210 解法三 由等差数列an的前n项和公式知,Sn是关于n的二次函数,即Sn=An2+Bn(A、B是常数) 将Sm=30,S2m=100代入,得,S3m=A·(3m)2+B·3m=210解法四 S3m=S2m+a2m+1+a2m+2+a3m=S2m+(a1+2md)+(am+2md)=S2m+(a1+am)+m·2md=S2m+Sm+2m2d 由解法一知d=,代入得S3m=210 解法五 根据等差数列性质知 Sm,S2mSm,S3mS2m也成等差数列,从而有 2(S2mSm)=Sm+(S3mS2m)S3m=3(S2mSm)=210解法六 Sn=na1+d,=a1+d点(n, )是直线y=+a1上的一串点,由三点(m,),(2m, ),(3m, )共线,易得S3m=3(S2mSm)=210 解法七 令m=1得S1=30,S2=100,得a1=30,a1+a2=100,a1=30,a2=70a3=70+(7030)=110S3=a1+a2+a3=210答案 210 学生巩固练习 1 等比数列an的首项a1=1,前n项和为Sn,若,则Sn等于( )C 2D 22 已知a,b,a+b成等差数列,a,b,ab成等比数列,且0<logm(ab)<1,则m的取值范围是_ 3 等差数列an共有2n+1项,其中奇数项之和为319,偶数项之和为290,则其中间项为_ 4 已知a、b、c成等比数列,如果a、x、b和b、y、c都成等差数列,则=_ 5 设等差数列an的前n项和为Sn,已知a3=12,S12>0,S13<0 (1)求公差d的取值范围;(2)指出S1、S2、S12中哪一个值最大,并说明理由 6 已知数列an为等差数列,公差d0,由an中的部分项组成的数列a,a,a,为等比数列,其中b1=1,b2=5,b3=17 (1)求数列bn的通项公式;(2)记Tn=Cb1+Cb2+Cb3+Cbn,求 7 设an为等差数列,bn为等比数列,a1=b1=1,a2+a4=b3,b2·b4=a3,分别求出an及bn的前n项和S10及T10 8 an为等差数列,公差d0,an0,(nN*),且akx2+2ak+1x+ak+2=0(kN*)(1)求证 当k取不同自然数时,此方程有公共根;(2)若方程不同的根依次为x1,x2,xn,求证 数列为等差数列 参考答案:1 解析 利用等比数列和的性质 依题意,而a1=1,故q1,根据等比数列性质知S5,S10S5,S15S10,也成等比数列,且它的公比为q5,q5=,即q= 答案 B2 解析 解出a、b,解对数不等式即可 答案 (,8)3 解析 利用S奇/S偶=得解 答案 第11项a11=294 解法一 赋值法 解法二 b=aq,c=aq2,x=(a+b)=a(1+q),y=(b+c)=aq(1+q), =2 答案 25 (1)解 依题意有 解之得公差d的取值范围为d3 (2)解法一 由d0可知a1>a2>a3>>a12>a13,因此,在S1,S2,S12中Sk为最大值的条件为 ak0且ak+10,即a3=12,,d0,2k3d3,4,得5 5k7 因为k是正整数,所以k=6,即在S1,S2,S12中,S6最大 解法二 由d0得a1>a2>>a12>a13,若在1k12中有自然数k,使得ak0,且ak+10,则Sk是S1,S2,S12中的最大值 由等差数列性质得,当m、n、p、qN*,且m+n=p+q时,am+an=ap+aq 所以有2a7=a1+a13=S130,a70,a7+a6=a1+a12=S12>0,a6a7>0,故在S1,S2,S12中S6最大 解法三 依题意得 最小时,Sn最大;d3,6(5)6 5 从而,在正整数中,当n=6时,n (5)2最小,所以S6最大 点评 该题的第(1)问通过建立不等式组求解属基本要求,难度不高,入手容易 第(2)问难度较高,为求Sn中的最大值Sk,1k12,思路之一是知道Sk为最大值的充要条件是ak0且ak+10,思路之三是可视Sn为n的二次函数,借助配方法可求解 它考查了等价转化的数学思想、逻辑思维能力和计算能力,较好地体现了高考试题注重能力考查的特点 而思路之二则是通过等差数列的性质等和性探寻数列的分布规律,找出“分水岭”,从而得解 6 解 (1)由题意知a52=a1·a17,即(a1+4d)2=a1(a1+16d)a1d=2d2,d0,a1=2d,数列的公比q=3,=a1·3n1又=a1+(bn1)d=由得a1·3n1=·a1 a1=2d0,bn=2·3n11 (2)Tn=Cb1+Cb2+Cbn=C (2·301)+C·(2·311)+C(2·3n11)=(C+C·32+C·3n)(C+C+C)=(1+3)n1(2n1)= ·4n2n+,7 解 an为等差数列,bn为等比数列,a2+a4=2a3,b2·b4=b32,已知a2+a4=b3,b2·b4=a3,b3=2a3,a3=b32,得b3=2b32,b30,b3=,a3= 由a1=1,a3=,知an的公差d=,S10=10a1+d= 由b1=1,b3=,知bn的公比q=或q=,8 证明 (1)an是等差数列,2ak+1=ak+ak+2,故方程akx2+2ak+1x+ak+2=0可变为(akx+ak+2)(x+1)=0,当k取不同自然数时,原方程有一个公共根1 (2)原方程不同的根为xk=课前后备注

    注意事项

    本文(高中数学复习专题讲座(第12讲)等差数列⒌缺仁行灾.doc)为本站会员(asd****56)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开