欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    中考数学压轴题解题技巧23248.pdf

    • 资源ID:79379321       资源大小:828.37KB        全文页数:12页
    • 资源格式: PDF        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    中考数学压轴题解题技巧23248.pdf

    关于中考数学压轴题的思考 2013、5、18 思考一:中考数学压轴题如何攻克 对中考数学卷,压轴题是考生最怕的,以为它一定很难,不敢碰它。其实,对历年中考的压轴题作一番分析,就会发现,其实也不是很难。这样,就能减轻做“压轴题”的心理压力,从中找到应对的办法。压轴题难度有约定:历年中考,压轴题一般都由 3 个小题组成。第(1)题容易上手,得分率在 0.8 以上;第(2)题稍难,一般还是属于常规题型,得分率在 0.6 与 0.7 之间,第(3)题较难,能力要求较高,但得分率也大多在 0.3 与 0.4 之间。近十年来,最后小题的得分率在 0.3以下的情况,只是偶尔发生,但一旦发生,就会引起各方关注。控制压轴题的难度已成为各届命题组的共识,“起点低,坡度缓,尾巴略翘”已成为各地区数学试卷设计的一大特色,以往茂名卷的压轴题大多不偏不怪,得分率稳定在 0.5 与 0.6 之间,即考生的平均得分在 7 分或 8 分。由此可见,压轴题也并不可怕。压轴题一般都是代数与几何的综合题,很多年来都是以函数和几何图形的综合作为主要方式,用到三角形、四边形、相似形和圆的有关知识。如果以为这是构造压轴题的唯一方式那就错了。方程与图形的综合的几何问题也是常见的综合方式,就是根据已知的几何条件列出代数方程而得解的,这类问题在外省市近年的中考试卷中也不乏其例。动态几何问题中有一种新题型,如北京市去年的压轴题,在图形的变换过程中,探究图形中某些不变的因素,它把操作、观察、探求、计算和证明融合在一起。在这类动态几何问题中,锐角三角比作为几何计算的一种工具,它的重要作用有可能在压轴题中初露头角。总之,压轴题有多种综合的方式,不要老是盯着某种方式,应对压轴题,决不能靠猜题、押题。分析结构理清关系:解压轴题,要注意它的逻辑结构,搞清楚它的各个小题之间的关系是“平列”的,还是“递进”的,这一点非常重要。如果(1)、(2)、(3)三个小题是平列关系,它们分别以大题的已知为条件进行解题,(1)的结论与(2)的解题无关,(2)的结论与(3)的解题无关,整个大题由这三个小题“拼装”而成。如果(1)、(2)两个小题是“递进关系”,(1)的结论由大题的已知条件证得,除已知外,(1)的结论又是解(2)所必要的条件之一。思考二:中考数学压轴题解题技巧之【分类讨论题】word 专业资料-可复制编辑-欢迎下载 分类讨论在数学题中经常以最后压轴题的方式出现,是满分率比较低的一种题,这一类题的特点就是小题较多,且容易失分,常常会被同学们忽略,经常忘记分类讨论,而大题却经常是讨论不全,讨论全了结果还不一定对。而且,这类题往往陷阱比较多,一个不注意就会掉进出题陷阱中。因此我们在考试当中一定要养成以下几个好习惯。以下几点是需要大家注意分类讨论的 1、熟知直角三角形的直角,等腰三角形的腰与角以及圆的对称性,根据图形的特殊性质,找准讨论对象,逐一解决。在探讨等腰或直角三角形存在时,一定要按照一定的原则,不要遗漏,最后要综合。2、讨论点的位置,一定要看清点所在的范围,是在直线上,还是在射线或者线段上。3、图形的对应关系多涉及到三角形的全等或相似问题,对其中可能出现的有关角、边的可能对应情况加以分类讨论。4、代数式变形中如果有绝对值、平方时,里面的数开出来要注意正负号的取舍。5、考查点的取值情况或范围。这部分多是考查自变量的取值范围的分类,解题中应十分注意性质、定理的使用条件及范围。6、函数题目中如果说函数图象与坐标轴有交点,那么一定要讨论这个交点是和哪一个坐标轴的哪一半轴的交点。7、由动点问题引出的函数关系,当运动方式改变后(比如从一条线段移动到另一条线段)时,所写的函数应该进行分段讨论。值得注意的是:在列出所有需要讨论的可能性之后,要仔细审查是否每种可能性都会存在,是否有需要舍去的。最常见的就是一元二次方程如果有两个不等实根,那么我们就要看看是不是这两个根都能保留。思考三:破解中考数学压轴题四个秘诀 word 专业资料-可复制编辑-欢迎下载 切入点一:做不出、找相似,有相似、用相似。压轴题牵涉到的知识点较多,知识转化的难度较高。学生往往不知道该怎样入手,这时往往应根据题意去寻找相似三角形。切入点二:构造定理所需的图形或基本图形(即作辅助线)。在解决问题的过程中,有时添加辅助线是必不可少的。对于北京中考来说,只有一道很简单的证明题是可以不用添加辅助线的,其余的全都涉及到辅助线的添加问题。中考对学生添线的要求还是挺高的,但添辅助线几乎都遵循这样一个原则:构造定理所需的图形或构造一些常见的基本图形。切入点三:紧扣不变量,并善于使用前题所采用的方法或结论。在图形运动变化时,图形的位置、大小、方向可能都有所改变,但在此过程中,往往有某两条线段,或某两个角或某两个三角形所对应的位置或数量关系不发生改变。切入点四:在题目中寻找多解的信息(分类思考)。图形在运动变化,可能满足条件的情形不止一种,也就是通常所说的两解或多解,如何避免漏解也是一个令考生头痛的问题,其实多解的信息在题目中就可以找到,这就需要我们深度的挖掘题干,实际上就是反复认真的审题。思考四:压轴题的做题技巧 1、对自身数学学习状况做一个完整的全面的认识,根据自己的情况考试的时候重心定位准确,防止“捡芝麻丢西瓜”。所以,在心中一定要给压轴题或几个“难点”一个时间上的限制,如果超过你设置的上限,必须要停止,回头认真检查前面的题,尽量要保证选择、填空万无一失,前面的解答题尽可能的检查一遍。2、解数学压轴题做一问是一问。第一问对绝大多数同学来说,不是问题;如果第一小问不会解,切忌不可轻易放弃第二小问。过程会多少写多少,因为数学解答题是按步骤给分的,写上去的东西必须要规范,字迹要工整,布局要合理;过程会写多少写多少,但是不要说废话,计算中尽量回避非必求成分;尽量多用几何知识,少用代数计算,尽量用三角函数,少在直角三角形中使用相似三角形的性质。例解压轴题解题:如图,在平面直角坐标系中,已知矩形 ABCD 的三个顶点 B(4,0)、C(8,0)、D(8,8).抛物线 y=ax2+bx 过 A、C 两点.word 专业资料-可复制编辑-欢迎下载(1)直接写出点 A 的坐标,并求出抛物线的解析式;(2)动点 P 从点 A 出发沿线段 AB 向终点 B 运动,同时点 Q从点 C 出发,沿线段 CD 向终点 D 运动速度均为每秒 1 个单位长度,运动时间为 t 秒.过点 P 作 PEAB 交 AC 于点 E.过点 E 作 EFAD 于点 F,交抛物线于点 G.当 t 为何值时,线段 EG 最长?连接 EQ在点 P、Q 运动的过程中,判断有几个时刻使得CEQ 是等腰三角形?请直接写出相应的 t 值.解:(1)点 A 的坐标为(4,8)将 A (4,8)、C(8,0)两点坐标分别代入 y=ax2+bx 8=16a+4b 得 0=64a+8b a=-12,b=4 抛物线的解析式为:y=-12x2+4x 3 分(2)在 RtAPE 和 RtABC 中,tanPAE=PEAP=BCAB,即PEAP=48 PE=12AP=12tPB=8-t 点的坐标为(4+12t,8-t).点 G 的纵坐标为:-12(4+12t)2+4(4+12t)=-18t2+8.5 分 EG=-18t2+8-(8-t)=-18t2+t.-180,当 t=4 时,线段 EG 最长为 2.7 分 共有三个时刻.8 分 t1=163,t2=4013,t3=8 525 11 分 压轴题解题技巧练习 一、对称翻折平移旋转 1(2010 年南宁)如图 12,把抛物线2yx(虚线部分)向右平移 1 个单位长度,再向上平移 1 个单位长word 专业资料-可复制编辑-欢迎下载 A B E C y 度,得到抛物线1l,抛物线2l与抛物线1l关于y轴对称.点A、O、B分别是抛物线1l、2l与x轴的交点,D、C分别是抛物线1l、2l的顶点,线段CD交y轴于点E.(1)分别写出抛物线1l与2l的解析式;(2)设P是抛物线1l上与D、O两点不重合的任意一点,Q点是P点关于y轴的对称点,试判断以P、Q、C、D为顶点的四边形是什么特殊的四边形?说明你的理由.(3)在抛物线1l上是否存在点M,使得ABMAOEDSS四边形,如果存在,求出M点的坐标,如果不存在,请说明理由.2(福建 2009 年宁德市)如图,已知抛物线 C1:522xay的顶点为 P,与 x 轴相交于 A、B 两点(点 A 在点 B 的左边),点 B 的横坐标是 1(1)求P点坐标及a的值;(4分)(2)如图(1),抛物线 C2与抛物线 C1关于 x 轴对称,将抛物线 C2向右平移,平移后的抛物线记为 C3,C3的顶点为 M,当点 P、M 关于点 B 成中心对称时,求 C3的解析式;(4 分)(3)如图(2),点 Q 是 x 轴正半轴上一点,将抛物线 C1绕点 Q 旋转 180后得到抛物线 C4抛物线 C4的顶点为 N,与 x 轴相交于 E、F 两点(点 E 在点 F 的左边),当以点 P、N、F 为顶点的三角形是直角三角形时,求点 Q 的坐标(5 分)二、动态:动点、动线 3(2010 年辽宁省锦州)如图,抛物线与x轴交于A(x1,0)、B(x2,0)两点,且x1x2,与y轴交于点C(0,4),其中x1、x2是方程x22x80 的两个根(1)求这条抛物线的解析式;(2)点P是线段AB上的动点,过点P作 PEAC,交BC于点E,连接CP,当CPE 的面积最大时,求点P的坐标;ACDEBO2l1l12yxy x A O B P M 图C1 C2 C3 2(1)y x A O B P N 图C1 C4 Q E F 2(2)word 专业资料-可复制编辑-欢迎下载(3)探究:若点Q是抛物线对称轴上的点,是否存在这样的点Q,使QBC成为等腰三 角形?若存在,请直接写出所有符合条件的 点Q的坐标;若不存在,请说明理由 4(2008 年山东省青岛市)已知:如图,在 RtACB 中,C90,AC4cm,BC3cm,点 P 由 B 出发沿BA 方向向点 A 匀速运动,速度为 1cm/s;点 Q 由 A 出发沿 AC 方向向点 C 匀速运动,速度为 2cm/s;连接 PQ若设运动的时间为t(s)(0t2),解答下列问题:(1)当 t 为何值时,PQBC?(2)设AQP 的面积为 y(2cm),求 y 与 t 之间的函数关系式;(3)是否存在某一时刻t,使线段 PQ 恰好把 RtACB 的周长和面积同时平分?若存在,求出此时t 的值;若不存在,说明理由;(4)如图,连接 PC,并把PQC 沿 QC 翻折,得到四边形 PQPC,那么是否存在某一时刻 t,使四边形 PQPC 为菱形?若存在,求出此时菱形的边长;若不存在,说明理由 5(09 年吉林省)如图所示,菱形 ABCD 的边长为 6 厘米,B60从初始时刻开始,点 P、Q 同时从 A 点出发,点 P 以 1 厘米/秒的速度沿 ACB 的方向运动,点 Q 以 2 厘米/秒的速度沿 ABCD 的方向运动,当点 Q 运动到 D 点时,P、Q 两点同时停止运动设 P、Q 运动的时间为 x 秒时,APQ 与ABC 重叠部分的面积为 y 平方厘米(这里规定:点和线段是面积为 0 的三角形),解答下列问题:(1)点 P、Q 从出发到相遇所用时间是_秒;(2)点 P、Q 从开始运动到停止的过程中,当APQ 是等边三角形时 x 的值是_秒;(3)求 y 与 x 之间的函数关系式 6(2009 年浙江省嘉兴市)如图,已知 A、B 是线段 MN 上的两点,4MN,1MA,1MB以 A 为中心顺时针旋转点M,以 B 为中心逆时针旋转点 N,使 M、N 两点重合成一点 C,构成ABC,设xAB (1)求 x 的取值范围;(2)若ABC 为直角三角形,求 x 的值;(3)探究:ABC 的最大面积?三、圆 7(2010 青海)如图 10,已知点 A(3,0),以 A 为圆心作A 与 Y 轴切于原点,与 x 轴的另一个交点为 B,过 B 作A 的切线 l.(1)以直线 l 为对称轴的抛物线过点 A 及点 C(0,9),求此抛物线的解析式;(2)抛物线与 x 轴的另一个交点为 D,过 D 作A 的切线 DE,E 为切点,求此切线长;P图A Q C P B 图A Q C P B C A B N M(第 24 题)D B A Q C P word 专业资料-可复制编辑-欢迎下载 C x x y y A O B E D A C B C D G 图 1 图 2(3)点 F 是切线 DE 上的一个动点,当BFD 与 EAD相似时,求出 BF 的长 8(2009 年中考天水)如图 1,在平面直角坐标系xOy,二次函数yax2bxc(a0)的图象顶点为D,与y轴交于点C,与x轴交于点A、B,点A在原点的左侧,点B的坐标为(3,0),OBOC,tanACO 1 3 (1)求这个二次函数的解析式;(2)若平行于x轴的直线与该抛物线交于点M、N,且以MN为直径的圆与x轴相切,求该圆的半径长度;(3)如图 2,若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上的一动点,当点P运动到什么位置时,AGP的面积最大?求此时点P的坐标和AGP的最大面积 9(09 年湖南省张家界市)在平面直角坐标系中,已知 A(4,0),B(1,0),且以 AB 为直径的圆交 y 轴的正半轴于点 C,过点 C 作圆的切线交 x 轴于点 D(1)求点 C 的坐标和过 A,B,C 三点的抛物线的解析式;(2)求点 D 的坐标;(3)设平行于 x 轴的直线交抛物线于 E,F 两点,问:是否存在以线段 EF 为直径的圆,恰好与 x 轴相切?若存在,求出该圆的半径,若不存在,请说明理由 xOy中,10(2009 年潍坊市)如图,在平面直角坐标系半径为 1 的圆的圆心O在坐标原点,且与两坐标轴分别交于ABCD、四点 抛物线2yaxbxc与y轴交于点D,与直线yx交于点MN、,且MANC、分别与圆O相切于点A和点C O x y N C D E F B M A y x O C D B A 1 4 word 专业资料-可复制编辑-欢迎下载(1)求抛物线的解析式;(2)抛物线的对称轴交x轴于点E,连结DE,并延长DE交圆O于F,求EF的长(3)过点B作圆O的切线交DC的延长线于点P,判断点P是否在抛物线上,说明理由 四、比例比值取值范围 11(2010 年怀化)图 9 是二次函数kmxy2)(的图象,其顶点坐标为 M(1,-4).(1)求出图象与x轴的交点 A,B 的坐标;(2)在二次函数的图象上是否存在点 P,使MABPABSS45,若存在,求出 P 点的坐标;若不存在,请说明理由;(3)将二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线)1(bbxy与此图象有两个公共点时,b的取值范围.12(湖南省长沙市 2010 年)如图,在平面直角坐标系中,矩形OABC的两边分别在x轴和y轴上,8 2OA cm,OC=8cm,现有两动点P、Q分别从O、C同时出发,P在线段OA上沿OA方向以每秒2 cm 的速度匀速运动,Q在线段CO上沿CO方向以每秒 1 cm 的速度匀速运动设运动时间为t秒(1)用t的式子表示OPQ的面积S;(2)求证:四边形OPBQ的面积是一个定值,并求出这个定值;(3)当OPQ与PAB和QPB相似时,抛物线214yxbxc经过B、P两点,过线段BP上一动点M作y轴的平行线交抛物线于N,当线段MN的长取最大值时,求直线MN把四边形OPBQ分成两部分的面积之比 图 9 图 1 B A P x C Q O y 第 26 题图 word 专业资料-可复制编辑-欢迎下载 13(成都市 2010 年)在平面直角坐标系xOy中,抛物线2yaxbxc与x轴交于AB、两点(点A在点B的左侧),与y轴交于点C,点A的坐标为(30),若将经过AC、两点的直线ykxb沿y轴向下平移 3 个单位后恰好经过原点,且抛物线的对称轴是直线2x (1)求直线AC及抛物线的函数表达式;(2)如 果P是 线 段AC上 一 点,设ABP、BPC的 面 积 分 别 为ABPS、BPCS,且:2:3ABPBPCSS,求点P的坐标;(3)设Q的半径为 l,圆心Q在抛物线上运动,则在运动过程中是否存在Q与坐标轴相切的情况?若存在,求出圆心Q的坐标;若不存在,请说明理由并探究:若设Q的半径为r,圆心Q在抛物线上运动,则当r取何值时,Q与两坐轴同时相切?五、探究型 14(内江市 2010)如图,抛物线2230ymxmxm m与x轴交于AB、两点,与y轴交于C点.(1)请求出抛物线顶点M的坐标(用含m的代数式表示),AB、两点的坐标;(2)经探究可知,BCM与ABC的面积比不变,试求出这个比值;(3)是否存在使BCM为直角三角形的抛物线?若存在,请求出;如果不存在,请说明 理由.15(重庆市潼南县 2010 年)如图,已知抛物线cbxxy221与y轴相交于 C,与x轴相交于 A、B,点A 的坐标为(2,0),点 C 的坐标为(0,-1).(1)求抛物线的解析式;(2)点 E 是线段 AC 上一动点,过点 E 作 DEx 轴于点 D,连结 DC,当DCE 的面积最大时,求点 D 的坐标;ABCEDx yo题图26word 专业资料-可复制编辑-欢迎下载(3)在直线 BC 上是否存在一点 P,使ACP 为等腰三角形,若存在,求点 P 的坐标,若不存在,说明理由.16(2008 年福建龙岩)如图,抛物线254yaxax经过ABC的三个顶点,已知BCx轴,点A在x轴上,点C在y轴上,且ACBC(1)求抛物线的对称轴;(2)写出ABC,三点的坐标并求抛物线的解析式;(3)探究:若点P是抛物线对称轴上且在x轴下方的动点,是否存在PAB是等腰三角形若存在,求出所有符合条件的点P坐标;不存在,请说明理由 17(09 年广 西 钦 州)26(本题满分 10 分)如图,已知抛物线 y34x2bxc 与坐标轴交于 A、B、C 三点,A 点的坐标为(1,0),过点 C 的直线 y34tx3 与 x 轴交于点 Q,点 P 是线段 BC 上的一个动点,过 P 作 PHOB 于点 H若 PB5t,且 0t1(1)填空:点 C 的坐标是_,b_,c_;(2)求线段 QH 的长(用含 t 的式子表示);(3)依点 P 的变化,是否存在 t 的值,使以 P、H、Q 为顶点的三角形与COQ 相似?若存在,求出所有t 的值;若不存在,说明理由 18(09 年重庆市)已知:如图,在平面直角坐标系 xOy 中,矩形 OABC 的边 OA 在y轴的正半轴上,OC 在x轴的正半轴上,OA2,OC3过原点 O 作AOC 的平分线交 AB 于点 D,连接 DC,过点 D 作 DEDC,交 OA 于点 E(1)求过点 E、D、C 的抛物线的解析式;(2)将EDC 绕点 D 按顺时针方向旋转后,角的一边与y轴的正半轴交于点 F,另一边与线段 OC 交于点G如果 DF 与(1)中的抛物线交于另一点 M,点 M 的横坐标为56,那么 EF2GO 是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点 G,在位于第一象限内的该抛物线上是否存在点 Q,使得直线 GQ 与 AB 的交点 P 与点C、G 构成的PCG 是等腰三角形?若存在,请求出点 Q 的坐标;若不存在,请说明理由 ABxyOQHPCA C B y x 0 1 1 word 专业资料-可复制编辑-欢迎下载 19(09 年湖南省长沙市)如图,抛物线 yax 2bxc(a0)与 x 轴交于 A(3,0)、B 两点,与 y 轴相交于点 C(0,3)当 x4 和 x2 时,二次函数 yax 2bxc(a0)的函数值 y 相等,连结 AC、BC(1)求实数 a,b,c 的值;(2)若点 M、N 同时从 B 点出发,均以每秒 1 个单位长度的速度分别沿 BA、BC 边运动,其中一个点到达终点时,另一点也随之停止运动当运动时间为 t 秒时,连结 MN,将BMN 沿 MN 翻折,B 点恰好落在 AC 边上的 P 处,求 t 的值及点 P 的坐标;(3)在(2)的条件下,抛物线的对称轴上是否存在点 Q,使得以 B,N,Q 为顶点的三角形与ABC 相似?若存在,请求出点 Q 的坐标;若不存在,请说明理由 20(08 江苏徐州)如图 1,一副直角三角板满足 ABBC,ACDE,ABCDEF90,EDF30【操作】将三角板 DEF 的直角顶点 E 放置于三角板 ABC 的斜边 AC 上,再将三角板DEF 绕点E旋转,并使边 DE与边 AB 交于点 P,边 EF 与边 BC 于点 Q【探究一】在旋转过程中,(1)如图 2,当CE1EA时,EP 与 EQ 满足怎样的数量关系?并给出证明.(2)如图 3,当CE2EA时 EP 与 EQ 满足怎样的数量关系?,并说明理由.(3)根据你对(1)、(2)的探究结果,试写出当CEEAm时,EP 与 EQ 满足的数量关系式 为_,其中m的取值范围是_(直接写出结论,不必证明)【探究二】若,AC30cm,连续 PQ,设EPQ 的面积为 S(cm2),在旋转过程中:(1)S 是否存在最大值或最小值?若存在,求出最大值或最小值,若不存在,说明理由.(2)随着 S 取不同的值,对应EPQ 的个数有哪些变化?不出相应 S 值的取值范围.FC(E)BA(D)QPDEFCBAQPDEFCBAA D B C E O x y y O x C N B P M A word 专业资料-可复制编辑-欢迎下载 六、最值类 22(2010 年恩施)如图 11,在平面直角坐标系中,二次函数cbxxy2的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与 y 轴交于C(0,-3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式(2)连结PO、PC,并把POC沿CO翻折,得到四 边形POP/C,那么是否存在点P,使四边形POP/C 为菱形?若存在,请求出此时点P的坐标;若不存在 请说明理由(3)当点P运动到什么位置时,四边形 ABPC的面积最大并求出此时P点的坐标和四边形ABPC的最大面积.

    注意事项

    本文(中考数学压轴题解题技巧23248.pdf)为本站会员(得**)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开