2017年山东省淄博市中考数学试卷(含解析).docx
-
资源ID:79865313
资源大小:395.94KB
全文页数:36页
- 资源格式: DOCX
下载积分:7.5金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2017年山东省淄博市中考数学试卷(含解析).docx
2017年山东省淄博市中考数学试卷一、选择题(本大题共12小题,每小题4分,共48分)1的相反数是()ABCD2C919大飞机是中国完全具有自主知识产权的干线民用飞机,其零部件总数超过100万个,请将100万用科学记数法表示为()A1×106B100×104C1×107D0.1×1083下列几何体中,其主视图为三角形的是()ABCD4下列运算正确的是()Aa2a3=a6B(a2)3=a5Ca10÷a9=a(a0)D(bc)4÷(bc)2=b2c25若分式的值为零,则x的值是()A1B1C±1D26若a+b=3,a2+b2=7,则ab等于()A2B1C2D17将二次函数y=x2+2x1的图象沿x轴向右平移2个单位长度,得到的函数表达式是()Ay=(x+3)22By=(x+3)2+2Cy=(x1)2+2Dy=(x1)228若关于x的一元二次方程kx22x1=0有两个不相等的实数根,则实数k的取值范围是()Ak1Bk1且k0Ck1Dk1或k=09如图,半圆的直径BC恰与等腰直角三角形ABC的一条直角边完全重合,若BC=4,则图中阴影部分的面积是()A2+B2+2C4+D2+410在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m,再由乙猜这个小球上的数字,记为n如果m,n满足|mn|1,那么就称甲、乙两人“心领神会”,则两人“心领神会”的概率是()ABCD11小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器,然后,小明对准玻璃杯口匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部,则下面可以近似地刻画出容器最高水位h与注水时间t之间的变化情况的是()ABCD12如图,在RtABC中,ABC=90°,AB=6,BC=8,BAC,ACB的平分线相交于点E,过点E作EFBC交AC于点F,则EF的长为()ABCD二、填空题(本大题共5小题,每小题4分,共20分)13分解因式:2x38x= 14已知,是方程x23x4=0的两个实数根,则2+3的值为 15运用科学计算器(如图是其面板的部分截图)进行计算,按键顺序如下:则计算器显示的结果是 16在边长为4的等边三角形ABC中,D为BC边上的任意一点,过点D分别作DEAB,DFAC,垂足分别为E,F,则DE+DF= 17设ABC的面积为1如图1,分别将AC,BC边2等分,D1,E1是其分点,连接AE1,BD1交于点F1,得到四边形CD1F1E1,其面积S1=如图2,分别将AC,BC边3等分,D1,D2,E1,E2是其分点,连接AE2,BD2交于点F2,得到四边形CD2F2E2,其面积S2=;如图3,分别将AC,BC边4等分,D1,D2,D3,E1,E2,E3是其分点,连接AE3,BD3交于点F3,得到四边形CD3F3E3,其面积S3=;按照这个规律进行下去,若分别将AC,BC边(n+1)等分,得到四边形CDnEnFn,其面积S= 三、解答题(本大题共7小题,共52分)18解不等式:19已知:如图,E,F为ABCD对角线AC上的两点,且AE=CF,连接BE,DF,求证:BE=DF20某内陆城市为了落实国家“一带一路”战略,促进经济发展,增强对外贸易的竞争力,把距离港口420km的普通公路升级成了同等长度的高速公路,结果汽车行驶的平均速度比原来提高了50%,行驶时间缩短了2h,求汽车原来的平均速度21为了“天更蓝,水更绿”某市政府加大了对空气污染的治理力度,经过几年的努力,空气质量明显改善,现收集了该市连续30天的空气质量情况作为样本,整理并制作了如下表格和一幅不完整的条形统计图:空气污染指数() 30 40 70 80 90 110 120 140 天数(t) 1 2 3 5 7 6 4 2说明:环境空气质量指数(AQI)技术规定:50时,空气质量为优;51100时,空气质量为良;101150时,空气质量为轻度污染;151200时,空气质量为中度污染,根据上述信息,解答下列问题:(1)直接写出空气污染指数这组数据的众数 ,中位数 ;(2)请补全空气质量天数条形统计图:(3)根据已完成的条形统计图,制作相应的扇形统计图;(4)健康专家温馨提示:空气污染指数在100以下适合做户外运动,请根据以上信息,估计该市居民一年(以365天计)中有多少天适合做户外运动?22如图,在直角坐标系中,RtABC的直角边AC在x轴上,ACB=90°,AC=1,反比例函数y=(k0)的图象经过BC边的中点D(3,1)(1)求这个反比例函数的表达式;(2)若ABC与EFG成中心对称,且EFG的边FG在y轴的正半轴上,点E在这个函数的图象上求OF的长;连接AF,BE,证明四边形ABEF是正方形23如图,将矩形纸片ABCD沿直线MN折叠,顶点B恰好与CD边上的动点P重合(点P不与点C,D重合),折痕为MN,点M,N分别在边AD,BC上,连接MB,MP,BP,BP与MN相交于点F(1)求证:BFNBCP;(2)在图2中,作出经过M,D,P三点的O(要求保留作图痕迹,不写做法);设AB=4,随着点P在CD上的运动,若中的O恰好与BM,BC同时相切,求此时DP的长24如图1,经过原点O的抛物线y=ax2+bx(a0)与x轴交于另一点A(,0),在第一象限内与直线y=x交于点B(2,t)(1)求这条抛物线的表达式;(2)在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;(3)如图2,若点M在这条抛物线上,且MBO=ABO,在(2)的条件下,是否存在点P,使得POCMOB?若存在,求出点P的坐标;若不存在,请说明理由2017年山东省淄博市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分)1的相反数是()ABCD【考点】14:相反数【分析】直接根据相反数的定义即可得出结论【解答】解:与是只有符号不同的两个数,的相反数是故选C2C919大飞机是中国完全具有自主知识产权的干线民用飞机,其零部件总数超过100万个,请将100万用科学记数法表示为()A1×106B100×104C1×107D0.1×108【考点】1I:科学记数法表示较大的数【分析】科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【解答】解:将100万用科学记数法表示为:1×106故选:A3下列几何体中,其主视图为三角形的是()ABCD【考点】U1:简单几何体的三视图【分析】找出四个选项中几何体的主视图,由此即可得出结论【解答】解:A、圆柱的主视图为矩形,A不符合题意;B、正方体的主视图为正方形,B不符合题意;C、球体的主视图为圆形,C不符合题意;D、圆锥的主视图为三角形,D符合题意故选D4下列运算正确的是()Aa2a3=a6B(a2)3=a5Ca10÷a9=a(a0)D(bc)4÷(bc)2=b2c2【考点】48:同底数幂的除法;46:同底数幂的乘法;47:幂的乘方与积的乘方【分析】根据同底数幂的乘法、除法、积的乘方和幂的乘方进行计算即可【解答】解:A、a2a3=a5,故A错误;B、(a2)3=a6,故B错误;C、a10÷a9=a(a0),故C正确;D、(bc)4÷(bc)2=b2c2,故D错误;故选C5若分式的值为零,则x的值是()A1B1C±1D2【考点】63:分式的值为零的条件【分析】直接利用分式的值为零,则分子为零,分母不为零,进而得出答案【解答】解:分式的值为零,|x|1=0,x+10,解得:x=1故选:A6若a+b=3,a2+b2=7,则ab等于()A2B1C2D1【考点】4C:完全平方公式【分析】根据完全平方公式得到(a+b)2=9,再将a2+b2=7整体代入计算即可求解【解答】解:a+b=3,(a+b)2=9,a2+2ab+b2=9,a2+b2=7,7+2ab=9,ab=1故选:B7将二次函数y=x2+2x1的图象沿x轴向右平移2个单位长度,得到的函数表达式是()Ay=(x+3)22By=(x+3)2+2Cy=(x1)2+2Dy=(x1)22【考点】H6:二次函数图象与几何变换【分析】根据题目中的函数解析式,可以先化为顶点式,然后再根据左加右减的方法进行解答即可得到平移后的函数解析式【解答】解:y=x2+2x1=(x+1)22,二次函数y=x2+2x1的图象沿x轴向右平移2个单位长度,得到的函数表达式是:y=(x+12)22=(x1)22,故选D8若关于x的一元二次方程kx22x1=0有两个不相等的实数根,则实数k的取值范围是()Ak1Bk1且k0Ck1Dk1或k=0【考点】AA:根的判别式【分析】利用一元二次方程的定义和判别式的意义得到k0且=(2)24k(1)0,然后其出两个不等式的公共部分即可【解答】解:根据题意得k0且=(2)24k(1)0,解得k1且k0故选B9如图,半圆的直径BC恰与等腰直角三角形ABC的一条直角边完全重合,若BC=4,则图中阴影部分的面积是()A2+B2+2C4+D2+4【考点】MO:扇形面积的计算;KW:等腰直角三角形【分析】如图,连接CD,OD,根据已知条件得到OB=2,B=45°,根据三角形和扇形的面积公式即可得到结论【解答】解:如图,连接CD,OD,BC=4,OB=2,B=45°,COD=90°,图中阴影部分的面积=SBOD+S扇形COD=2×2+=2+,故选A10在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m,再由乙猜这个小球上的数字,记为n如果m,n满足|mn|1,那么就称甲、乙两人“心领神会”,则两人“心领神会”的概率是()ABCD【考点】X6:列表法与树状图法;15:绝对值【分析】画出树状图列出所有等可能结果,由树状图确定出所有等可能结果数及两人“心领神会”的结果数,根据概率公式求解可得【解答】解:画树状图如下:由树状图可知,共有16种等可能结果,其中满足|mn|1的有10种结果,两人“心领神会”的概率是=,故选:B11小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器,然后,小明对准玻璃杯口匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部,则下面可以近似地刻画出容器最高水位h与注水时间t之间的变化情况的是()ABCD【考点】E6:函数的图象【分析】根据用一注水管沿大容器内壁匀速注水,即可分段求出小水杯内水面的高度h(cm)与注水时间t(min)的函数图象【解答】解:一注水管向小玻璃杯内注水,水面在逐渐升高,当小杯中水满时,开始向大桶内流,这时水位高度不变,当桶水面高度与小杯一样后,再继续注水,水面高度在升高,升高的比开始慢故选:D12如图,在RtABC中,ABC=90°,AB=6,BC=8,BAC,ACB的平分线相交于点E,过点E作EFBC交AC于点F,则EF的长为()ABCD【考点】S9:相似三角形的判定与性质;KF:角平分线的性质;KJ:等腰三角形的判定与性质【分析】延长FE交AB于点D,作EGBC、作EHAC,由EFBC可证四边形BDEG是矩形,由角平分线可得ED=EH=EG、DAE=HAE,从而知四边形BDEG是正方形,再证DAEHAE、CGECHE得AD=AH、CG=CH,设BD=BG=x,则AD=AH=6x、CG=CH=8x,由AC=10可得x=2,即BD=DE=2、AD=4,再证ADFABC可得DF=,据此得出EF=DFDE=【解答】解:如图,延长FE交AB于点D,作EGBC于点G,作EHAC于点H,EFBC、ABC=90°,FDAB,EGBC,四边形BDEG是矩形,AE平分BAC、CE平分ACB,ED=EH=EG,DAE=HAE,四边形BDEG是正方形,在DAE和HAE中,DAEHAE(SAS),AD=AH,同理CGECHE,CG=CH,设BD=BG=x,则AD=AH=6x、CG=CH=8x,AC=10,6x+8x=10,解得:x=2,BD=DE=2,AD=4,DFBC,ADFABC,=,即=,解得:DF=,则EF=DFDE=2=,故选:C二、填空题(本大题共5小题,每小题4分,共20分)13分解因式:2x38x=2x(x2)(x+2)【考点】55:提公因式法与公式法的综合运用【分析】先提取公因式2x,再对余下的项利用平方差公式分解因式【解答】解:2x38x,=2x(x24),=2x(x+2)(x2)14已知,是方程x23x4=0的两个实数根,则2+3的值为0【考点】AB:根与系数的关系【分析】根据根与系数的关系得到得+=3,再把原式变形得到a(+)3,然后利用整体代入的方法计算即可【解答】解:根据题意得+=3,=4,所以原式=a(+)3=33=0故答案为015运用科学计算器(如图是其面板的部分截图)进行计算,按键顺序如下:则计算器显示的结果是959【考点】1M:计算器基础知识【分析】根据计算器的按键顺序,写出计算的式子然后求值【解答】解:根据题意得:(3.54.5)×312+=959,故答案为:95916在边长为4的等边三角形ABC中,D为BC边上的任意一点,过点D分别作DEAB,DFAC,垂足分别为E,F,则DE+DF=2【考点】KK:等边三角形的性质【分析】作AGBC于G,根据等边三角形的性质得出B=60°,解直角三角形求得AG=2,根据SABD+SACD=SABC即可得出DE+DF=AG=2【解答】解:如图,作AGBC于G,ABC是等边三角形,B=60°,AG=AB=2,连接AD,则SABD+SACD=SABC,ABDE+ACDF=BCAG,AB=AC=BC=4,DE+DF=AG=2,故答案为:217设ABC的面积为1如图1,分别将AC,BC边2等分,D1,E1是其分点,连接AE1,BD1交于点F1,得到四边形CD1F1E1,其面积S1=如图2,分别将AC,BC边3等分,D1,D2,E1,E2是其分点,连接AE2,BD2交于点F2,得到四边形CD2F2E2,其面积S2=;如图3,分别将AC,BC边4等分,D1,D2,D3,E1,E2,E3是其分点,连接AE3,BD3交于点F3,得到四边形CD3F3E3,其面积S3=;按照这个规律进行下去,若分别将AC,BC边(n+1)等分,得到四边形CDnEnFn,其面积S=【考点】38:规律型:图形的变化类;K3:三角形的面积【分析】先连接D1E1,D2E2,D3E3,依据D1E1AB,D1E1=AB,可得CD1E1CBA,且=,根据相似三角形的面积之比等于相似比的平方,即可得到SCD1E1=SABC=,依据E1是BC的中点,即可得出SD1E1F1=SBD1E1=×=,据此可得S1=;运用相同的方法,依次可得S2=,S2=;根据所得规律,即可得出四边形CDnEnFn,其面积Sn=+×n×,最后化简即可【解答】解:如图所示,连接D1E1,D2E2,D3E3,图1中,D1,E1是ABC两边的中点,D1E1AB,D1E1=AB,CD1E1CBA,且=,SCD1E1=SABC=,E1是BC的中点,SBD1E1=SCD1E1=,SD1E1F1=SBD1E1=×=,S1=SCD1E1+SD1E1F1=+=,同理可得:图2中,S2=SCD2E2+SD2E2F2=+=,图3中,S3=SCD3E3+SD3E3F3=+=,以此类推,将AC,BC边(n+1)等分,得到四边形CDnEnFn,其面积Sn=+×n×=,故答案为:三、解答题(本大题共7小题,共52分)18解不等式:【考点】C6:解一元一次不等式【分析】不等式去分母,去括号,移项合并,把x系数化为1,即可求出解集【解答】解:去分母得:3(x2)2(7x),去括号得:3x6142x,移项合并得:5x20,解得:x419已知:如图,E,F为ABCD对角线AC上的两点,且AE=CF,连接BE,DF,求证:BE=DF【考点】L5:平行四边形的性质;KD:全等三角形的判定与性质【分析】证明AEBCFD,即可得出结论【解答】证明:四边形ABCD是平行四边形,ABDC,AB=DCBAE=DCF在AEB和CFD中,AEBCFD(SAS)BE=DF20某内陆城市为了落实国家“一带一路”战略,促进经济发展,增强对外贸易的竞争力,把距离港口420km的普通公路升级成了同等长度的高速公路,结果汽车行驶的平均速度比原来提高了50%,行驶时间缩短了2h,求汽车原来的平均速度【考点】B7:分式方程的应用【分析】求的汽车原来的平均速度,路程为420km,一定是根据时间来列等量关系,本题的关键描述语是:从甲地到乙地的时间缩短了2h等量关系为:原来时间现在时间=2【解答】解:设汽车原来的平均速度是x km/h,根据题意得:=2,解得:x=70经检验:x=70是原方程的解答:汽车原来的平均速度70km/h21为了“天更蓝,水更绿”某市政府加大了对空气污染的治理力度,经过几年的努力,空气质量明显改善,现收集了该市连续30天的空气质量情况作为样本,整理并制作了如下表格和一幅不完整的条形统计图:空气污染指数() 30 40 70 80 90 110 120 140 天数(t) 1 2 3 5 7 6 4 2说明:环境空气质量指数(AQI)技术规定:50时,空气质量为优;51100时,空气质量为良;101150时,空气质量为轻度污染;151200时,空气质量为中度污染,根据上述信息,解答下列问题:(1)直接写出空气污染指数这组数据的众数90,中位数90;(2)请补全空气质量天数条形统计图:(3)根据已完成的条形统计图,制作相应的扇形统计图;(4)健康专家温馨提示:空气污染指数在100以下适合做户外运动,请根据以上信息,估计该市居民一年(以365天计)中有多少天适合做户外运动?【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图;W4:中位数;W5:众数【分析】(1)根据众数的定义就可以得出这组数据的众数为90,由30各数据中排在第15和第16两个数的平均数就可以得出中位数为90;(2)根据统计表的数据分别计算出,优、良及轻度污染的时间即可;(3)由条形统计图分别计算出优、良及轻度污染的百分比及圆心角的度数即可;(4)先求出30天中空气污染指数在100以下的比值,再由这个比值乘以365天就可以求出结论【解答】解:(1)在这组数据中90出现的次数最多7次,故这组数据的众数为90;在这组数据中排在最中间的两个数是90,90,这两个数的平均数是90,所以这组数据的中位数是90;故答案为:90,90(2)由题意,得轻度污染的天数为:30315=12天(3)由题意,得优所占的圆心角的度数为:3÷30×360=36°,良所占的圆心角的度数为:15÷30×360=180°,轻度污染所占的圆心角的度数为:12÷30×360=144°(4)该市居民一年(以365天计)中有适合做户外运动的天数为:18÷30×365=219天22如图,在直角坐标系中,RtABC的直角边AC在x轴上,ACB=90°,AC=1,反比例函数y=(k0)的图象经过BC边的中点D(3,1)(1)求这个反比例函数的表达式;(2)若ABC与EFG成中心对称,且EFG的边FG在y轴的正半轴上,点E在这个函数的图象上求OF的长;连接AF,BE,证明四边形ABEF是正方形【考点】GB:反比例函数综合题【分析】(1)由D点坐标可求得k的值,可求得反比例函数的表达式;(2)由中心对称的性质可知ABCEFG,由D点坐标可求得B点坐标,从而可求得BC和AC的长,由全等三角形的性质可求得GE和GF,则可求得E点坐标,从而可求得OF的长;由条件可证得AOFFGE,则可证得AF=EF=AB,且EFA=FAB=90°,则可证得四边形ABEF为正方形【解答】解:(1)反比例函数y=(k0)的图象经过点D(3,1),k=3×1=3,反比例函数表达式为y=;(2)D为BC的中点,BC=2,ABC与EFG成中心对称,ABCEFG,GF=BC=2,GE=AC=1,点E在反比例函数的图象上,E(1,3),即OG=3,OF=OGGF=1;如图,连接AF、BE,AC=1,OC=3,OA=GF=2,在AOF和FGE中AOFFGE(SAS),GFE=FAO=ABC,GFE+AFO=FAO+BAC=90°,EFAB,且EF=AB,四边形ABEF为平行四边形,AF=EF,四边形ABEF为菱形,AFEF,四边形ABEF为正方形23如图,将矩形纸片ABCD沿直线MN折叠,顶点B恰好与CD边上的动点P重合(点P不与点C,D重合),折痕为MN,点M,N分别在边AD,BC上,连接MB,MP,BP,BP与MN相交于点F(1)求证:BFNBCP;(2)在图2中,作出经过M,D,P三点的O(要求保留作图痕迹,不写做法);设AB=4,随着点P在CD上的运动,若中的O恰好与BM,BC同时相切,求此时DP的长【考点】MR:圆的综合题【分析】(1)根据折叠的性质可知,MN垂直平分线段BP,即BFN=90°,由矩形的性质可得出C=90°=BFN,结合公共角FBN=CBP,即可证出BFNBCP;(2)在图2中,作MD、DP的垂直平分线,交于点O,以OD为半径作圆即可;设O与BC的交点为E,连接OB、OE,由MDP为直角三角形,可得出AP为O的直径,根据BM与O相切,可得出MPBM,进而可得出BMP为等腰直角三角形,根据同角的余角相等可得出PMD=MBA,结合A=PMD=90°、BM=MP,即可证出ABMDMP(AAS),根据全等三角形的性质可得出DM=AB=4、DP=AM,设DP=2a,根据勾股定理结合半径为直径的一半,即可得出关于a的方程,解之即可得出a值,再将a代入OP=2a中求出DP的长度【解答】(1)证明:将矩形纸片ABCD沿直线MN折叠,顶点B恰好与CD边上的动点P重合,MN垂直平分线段BP,BFN=90°四边形ABCD为矩形,C=90°FBN=CBP,BFNBCP(2)解:在图2中,作MD、DP的垂直平分线,交于点O,以OD为半径作圆即可如图所示设O与BC的交点为E,连接OB、OE,如图3所示MDP为直角三角形,AP为O的直径,BM与O相切,MPBMMB=MP,BMP为等腰直角三角形AMB+PMD=180°AMP=90°,MBA+AMB=90°,PMD=MBA在ABM和DMP中,ABMDMP(AAS),DM=AB=4,DP=AM设DP=2a,则AM=2a,OE=4a,BM=2BM=MP=2OE,2=2×(4a),解得:a=,DP=2a=324如图1,经过原点O的抛物线y=ax2+bx(a0)与x轴交于另一点A(,0),在第一象限内与直线y=x交于点B(2,t)(1)求这条抛物线的表达式;(2)在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;(3)如图2,若点M在这条抛物线上,且MBO=ABO,在(2)的条件下,是否存在点P,使得POCMOB?若存在,求出点P的坐标;若不存在,请说明理由【考点】HF:二次函数综合题【分析】(1)由直线解析式可求得B点坐标,由A、B坐标,利用待定系数法可求得抛物线的表达式;(2)过C作CDy轴,交x轴于点E,交OB于点D,过B作BFCD于点F,可设出C点坐标,利用C点坐标可表示出CD的长,从而可表示出BOC的面积,由条件可得到关于C点坐标的方程,可求得C点坐标;(3)设MB交y轴于点N,则可证得ABONBO,可求得N点坐标,可求得直线BN的解析式,联立直线BM与抛物线解析式可求得M点坐标,过M作MGy轴于点G,由B、C的坐标可求得OB和OC的长,由相似三角形的性质可求得的值,当点P在第一象限内时,过P作PHx轴于点H,由条件可证得MOGPOH,由=的值,可求得PH和OH,可求得P点坐标;当P点在第三象限时,同理可求得P点坐标【解答】解:(1)B(2,t)在直线y=x上,t=2,B(2,2),把A、B两点坐标代入抛物线解析式可得,解得,抛物线解析式为y=2x23x;(2)如图1,过C作CDy轴,交x轴于点E,交OB于点D,过B作BFCD于点F,点C是抛物线上第四象限的点,可设C(t,2t23t),则E(t,0),D(t,t),OE=t,BF=2t,CD=t(2t23t)=2t2+4t,SOBC=SCDO+SCDB=CDOE+CDBF=(2t2+4t)(t+2t)=2t2+4t,OBC的面积为2,2t2+4t=2,解得t1=t2=1,C(1,1);(3)存在设MB交y轴于点N,如图1,B(2,2),AOB=NOB=45°,在AOB和NOB中AOBNOB(ASA),ON=OA=,N(0,),可设直线BN解析式为y=kx+,把B点坐标代入可得2=2k+,解得k=,直线BN的解析式为y=x+,联立直线BN和抛物线解析式可得,解得或,M(,),C(1,1),COA=AOB=45°,且B(2,2),OB=2,OC=,POCMOB,=2,POC=BOM,当点P在第一象限时,如图3,过M作MGy轴于点G,过P作PHx轴于点H,COA=BOG=45°,MOG=POH,且PHO=MGO,MOGPOH,=2,M(,),MG=,OG=,PH=MG=,OH=OG=,P(,);当点P在第三象限时,如图4,过M作MGy轴于点G,过P作PHy轴于点H,同理可求得PH=MG=,OH=OG=,P(,);综上可知存在满足条件的点P,其坐标为(,)或(,)2017年7月21日