四年级数学下册 6 运算律知识清单素材 苏教版(共4页DOC).docx
-
资源ID:79968163
资源大小:173.24KB
全文页数:4页
- 资源格式: DOCX
下载积分:9金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
四年级数学下册 6 运算律知识清单素材 苏教版(共4页DOC).docx
最新资料推荐运算律一、加法交换律、结合律1.加法交换律:定义:两个数相加,交换加数的位置,它们的和不变。用字母表示:a+b=b+a教材55页例1中要求跳绳的有多少人,只要把跳绳的男生人数和女生人数合起来即可。可以用男生人数加上女生人数,也可以用女生人数加上男生人数。通过列式计算,交换两个加数的位置,和不变。2.加法结合律:定义:三个数相加,先把前两个数相加,再和第三个数相加,或者先把后两个数相加,再和第一个数相加,和不变。用字母表示:(a+b)+c=a+(b+c)教材56页,要求跳绳和踢毽子的一共有多少人,只要把跳绳的男生人数、女生人数和踢毽子的女生人数三部分合起来即可。可以先算出跳绳的有多少人,再加上踢毽子的人数;也可以先算出女生有多少人,再加上男生人数。二、应用加法运算律进行简便计算1.计算连加时,先观察哪两个数或哪几个数相加可以凑成整十、整百、整千数,然后运用加法运算律,可以使计算简便。教材57页例2,要求三个年级一共有多少人参加比赛,只要把三个年级的人数合起来即可,用加法计算,列式为“29+46+54”,用简便方法计算,先观察发现46和54可以凑成100,运用加法结合律可以先把这两个数相加,即29+(46+54)。2.解决问题:运用“凑整”法解决连加算式的简便问题:连加的简算方法一般离不开“凑整”法,“凑整”法是指把相加的数凑成整十、整百、整千数,在这个过程中可以调换加数的位置,有时还可以把某个数拆成整十、整百、整千数加减另一个数的形式。运用对应法解决求等差数列的和的问题:求一组等差数列的和,可用“(首项+末项)×项数÷2”的公式解题。三、乘法交换律、结合律以及相关的简便计算1.乘法交换律:定义:两个数相乘,交换两个乘数的位置,积不变。用字母表示:a×b=b×a教材60页例3,图中有三组同学在踢毽子,每组5人,要求一共有多少人在踢毽子,只要把每组的人数与分成的组数相乘即可。用“组数×人数”或用“人数×组数”,所得出的结果是不变的。拓展:多个数相乘,任意交换乘数的位置,积不变。如a×b×c×d×e=a×c×e×b×d=a×d×b×c×e2.乘法结合律:定义:三个数相乘,先把前两个数相乘,再与第三个数相乘,或者先把后两个数相乘,再与第一个数相乘,积不变。用字母表示:(a×b)×c=a×(b×c)。教材61页例4,要求6个年级一共要选派多少人参加比赛,可以先算出每个年级参赛的人数,再算6个年级参赛的总人数;也可以先求6个年级一共有多少个班,再和每班的人数相乘,求出一共有多少人参赛。3.运用乘法交换律和乘法结合律进行简便计算:在连乘算式中,当某两个乘数的积正好是整十、整百、整千数时,运用乘法交换律或乘法结合律先把这两个数相乘,能使计算简便。4.解决简算问题:运用拆分法解决乘法简算问题:运用拆分法将某个乘数拆分成几个数相乘的形式,使其中的乘数与其他乘数的积能“凑整”,使计算简便。运用转化法解决乘除混合运算问题:在没有括号的乘除混合运算中,有时交换乘数或除数的位置(交换时,一定要带上前面的运算符号),能使计算简便。四、乘法分配律1.定义:两个数的和(或差)与一个数相乘,可以先把这两个数分别与这个数相乘,再相加(或相减)。2.用字母表示:(a+b)×c=a×c+b×c或(a-b)×c=a×c-b×c。教材62页例5,要求四、五年级一共要领多少根跳绳。方法一:先算出四、五年级一共有多少个班,再算出两个年级一共要领多少根跳绳;方法二:先算出四、五年级各领多少根跳绳,再算出一共要领多少根跳绳。观察发现,因为是一道题的两种解法,结果相同,因此得出结论:两个数的和与一个数相乘,可以先把这两个数分别与这个数相乘,再相加,这就是乘法分配律。五、运用乘法分配律进行简便计算1.两个数相乘,如果有一个乘数接近整百数,可将其转化成整百数加或减一个数的形式,再运用乘法分配律进行计算,可使计算简便。2.运用乘法分配律进行简算时,要注意拆分形式为(a+b)×c=a×c+b×c或(a-b)×c=a×c-b×c。3.解决简算问题:运用“建模”法解决简算问题:几个算式中都有相同的乘数,可以将这个相同的乘数提取出来,将另外几个乘数组合在一起算,如a×d+b×d+c×d=(a+b+c)×d或a×d-b×d-c×d=(a-b-c)×d。运用转化法解决稍复杂的简算问题:可以多次运用乘法分配律,使计算简便。六、解决问题1.用乘法分配律解决相遇问题:解决问题之前,可以先画图或列表理清题目的已知条件和问题,再从不同的角度去思考,就会得到不同的解题方法。2.运用观察法解决乘除混合运算中的简算问题:在乘除混合运算中,如果算式中没有括号,移动各数的位置时,要把数前面的运算符号一起移动。3.运用“建模”法解决复杂的简算问题:在乘加、乘减算式中,找出相同的乘数,巧用乘法分配律是解答此题的关键。方法指导:加法交换律和加法结合律适用连加运算,乘法交换律和乘法结合律适用连乘运算。用字母表示数,渗透了符号化思想。符号化思想就是用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学的内容。举例:用简便算法计算29+16+24,3个数连加,运用加法结合律可以简便运算。16+24正好是40,先算比较简便。29+16+24=29+(16+24)=29+40=69在应用加法运算律进行简算时,有时会同时用到两种运算律。易错点:加法交换律和乘法交换律改变的是加数和乘数的位置,结果不变。在应用乘法运算律简算时,有时会同时用到两种或两种以上的运算律。要点提示:加法结合律和乘法结合律改变的是运算顺序,结果不变。举例:用简便方法计算25×102。可以把102看作100+2,再根据乘法分配律就可以算出结果。25×102=25×(100+2)=25×100+25×2=2500+50=2550知识巧记连加计算仔细看,考虑加数是关键。整十、整百与整千,结合起来会简便。交换律记心间,交换位置和不变。结合律应用广,加数凑整更简单。3.解决简算问题:运用转化法解决简算问题:根据乘法分配律,把乘法算式中的一个乘数变为两个数的和的形式使解题简单化。运用拆分法解决简算问题:通过转化,使两个乘法算式中含有相同的乘数,再逆用乘法分配律,可使计算简便。简算时,要先仔细观察题中所给的数是否符合运算律,再灵活应用。易错点:运用乘法分配律进行计算时,乘数需和两个加数分别相乘。知识巧记根据乘法分配律,把乘法算式中的一个乘数变为两个数的和的形式是解决根据乘法分配律填等式的关键。计算方法:两位数乘几百零几,可以先把几百零几改写成几百加几,分别用两位数去乘整百数和一位数,再把两次乘得的积加起来。计算方法:如果两个数分别与同一个数相乘,这两个数的和是整十、整百、整千的数,那么可以根据乘法分配律的逆运算来计算,这样计算比较简便。最新精品资料整理推荐,更新于二二二年三月二十七日2022年3月27日星期日20:24:26