弯曲应力平面弯曲的概念.pptx
材料力学1第1页/共127页材料力学24、平面弯曲:杆发生弯曲变形后,轴线仍然和外力 在同一平面内。平面弯曲亦称为对称弯曲纵向对称面MF1F2q第2页/共127页材料力学3FA AF1F2 B对称轴纵对称面FB 对称弯曲(平面弯曲)时梁变形后轴线所在平面与外力所在平面相重合第3页/共127页材料力学4 特定条件下,发生非对称弯曲的梁变形后其轴线所在平面也会跟外力所在平面相重合,因而也属于平面弯曲。梁不具有纵对称面;梁有纵对称面,但外力没有作用在纵对称面内,从而变形后轴线所在平面与梁的纵对称面不一致。5、非对称弯曲yzFzyFqxq第4页/共127页材料力学5二、梁的计算简图 梁的支承条件与载荷情况一般都比较复杂,为了便于分析计算,应进行必要的简化,抽象出计算简图。1、构件本身的简化 通常取梁的轴线来代替梁。2、载荷简化 作用于梁上的载荷(包括支座约束力)可简化为三种类型:集中力、集中力偶和分布载荷。第5页/共127页材料力学6梁载荷的简化均匀分布载荷线性(非均匀)分布载荷集中力偶 M分布载荷载荷集度 q(N/m)qq(x)F集中力MM第6页/共127页材料力学7固定铰支座 2个约束,1个自由度。如:桥梁下的固定支座,止推滚珠轴承等。可动铰支座 1个约束,2个自由度。如:桥梁下的辊轴支座,滚珠轴承等。FAxFAyFA3、支座简化第7页/共127页材料力学8固定端 3个约束,0个自由度。如:游泳池的跳水板支座,木桩下端的支座等。FAxFAyMA4、梁的三种基本形式q(x)分布力悬臂梁简支梁M集中力偶第8页/共127页材料力学95、静定梁与静不定梁静定梁:由静力学方程可求出全部约束力,如上述 三种基本形式的静定梁。静不定梁:由静力学方程不可求出全部约束力。外伸梁q均布力集中力F第9页/共127页材料力学10一、弯曲内力已知:如图,F,a,l。求:距A端x处截面上内力。FFAyFAxFBAB解:求外力4.2 梁的剪力和弯矩FalAB第10页/共127页材料力学11ABmmx求内力截面法AFAyFSMM 弯曲构件 内力剪力 FS弯矩 M1、弯矩:M 构件受弯时,作用面垂直于横截面的内力偶矩。CCFAyFAxFBFSFBFFB第11页/共127页材料力学122、剪力:FS 构件受弯时,作用线平行于横截面的内力。3、内力的正负规定剪力FS:绕研究对象顺时针转为正;反之为负。弯矩M:使梁变成凹形的为正弯矩;使梁变成凸形的为负弯矩。FS(+)M(+)M(+)M()M()FS(+)FS()FS()第12页/共127页材料力学134、内力大小的求法:(按“设正法”画图)某截面剪力的大小等于该截面一侧(左或右)梁上所有外力的代数和。即 对截面左侧梁而言,向上的外力引起正的剪力,向下的外力引起负的剪力。右侧则相反q1FAMCq2 F1FSMCFSFB F2q3第13页/共127页材料力学14某截面弯矩的大小等于该截面一侧所有外力对 此截面形心之矩的代数和。向上的外力引起正的弯矩,向下的外力引起负的弯矩。q1FAMCq2 F1FSM1MCFSFB F2q3M2截面左侧梁上顺时针转向的力偶引起正的弯矩,逆时针转向的力偶引起负的弯矩。右侧则相反第14页/共127页材料力学15计算一个截面的内力,可直接根据方程由外力写出结果,而不必逐个作截面画受力图再列方程求解。求弯矩时不论取截面左侧还是取截面右侧,都是向上的外力引起正的弯矩,向下的外力引起负的弯矩,与求剪力不同。注意第15页/共127页材料力学16求下图所示简支梁1-1与2-2截面的剪力和弯矩。2112m21.5mq=12kN/m3m1.5m1.5mF=8kNABFAFB解:1、求约束力2、计算1-1截面的内力3、计算2-2截面的内力F=8kNFAFBq=12kN/m第16页/共127页材料力学17二、剪力方程和弯矩方程 内力图1、内力方程:内力与截面位置坐标(x)间的函数关系式。剪力方程FS=FS(x)弯矩方程M=M(x)用方程表达内力沿轴线的变化规律,其优缺点是 用积分法求弯曲变形需要列出弯矩方程;方程依赖于坐标系,即同一段梁用不同坐标系写出的 方程不同。且内力变化规律不直观,不方便。2、剪力图和弯矩图:剪力图FS=FS(x)的图线表示弯矩图M=M(x)的图线表示将内力方程画成图像,观察内力变化规律既唯一又直观。第17页/共127页材料力学18解:1、求约束力2、列剪力方程和弯矩方程x 图示简支梁受集度为q的满布荷载作用。试作梁的剪力图和弯矩图。BlAqFAM(x)FS(x)xAqFBFA第18页/共127页材料力学19BlAq3、作剪力图和弯矩图ql28l/2M图 ql 2FS图第19页/共127页材料力学20解:1、求约束力2、列剪力方程和弯矩方程需分两段列出图示简支梁受集中荷载F作用。试作梁的剪力图和弯矩图。xBlAF abCFBFA第20页/共127页材料力学21xBlAF abCFBFAAC段M(x)FAxAFS(x)CB段FBBFS(x)M(x)第21页/共127页材料力学22FS 图FblFalM图FablF 3、作剪力图和弯矩图BlAabC第22页/共127页材料力学23FSM 由剪力、弯矩图知:在集中力作用点,弯矩图发生转折,剪力图发生突变,其突变值等于集中力的大小,从左向右作图,突变方向沿集中力作用的方向。FabClAB第23页/共127页材料力学24M 图示简支梁在C点受矩为M 的集中力偶作用。作梁的剪力图和弯矩图。BlACab2、列剪力方程和弯矩方程解:1、求约束力FA FB第24页/共127页材料力学25剪力方程无需分段:弯矩方程两段:AC段:M(x)xAFAFS(x)FA FBBlACabxMCB段:BFS(x)M(x)FB第25页/共127页材料力学26FS图lMlM图MalMb3、作剪力图和弯矩图BlACabM第26页/共127页材料力学27abClABMFSM 由剪力、弯矩图知:在集中力偶作用点,弯矩图发生突变,其突变值为集中力偶的大小。结构对称、外力对称时,剪力图为反对称,弯矩图为正对称。结构对称、外力反对称时,剪力图为正对称,弯矩图为反对称。第27页/共127页材料力学28 3、FS,M 图(剪力图与弯矩图)的要求 与梁轴对齐画,并注明内力性质;正的剪力画在梁的上方,负的剪力 画在梁的下方;弯矩无论正负均画在梁受拉的一侧;标明特殊截面内力数值;标明内力的正负号;注明内力单位。第28页/共127页材料力学29三、剪力、弯矩与分布荷载间的关系对dx 微段分析,由Fy=0:dxxq(x)M(x)+dM(x)FS(x)+dFS(x)FS(x)M(x)dxA剪力图上某点切线的斜率等于该点处载荷集度的大小q(x)向上为正y第29页/共127页材料力学30弯矩图上某点处切线的斜率等于该点剪力的大小。FS(x)+dFS(x)q(x)M(x)+dM(x)FS(x)M(x)dxA弯矩与载荷集度的关系是:第30页/共127页材料力学31 剪力、弯矩与分布荷载间的积分关系由微分关系积分得条件:x1到x2间无集中力偶作用。条件:x1到x2间无集中力作用。第31页/共127页材料力学32二、剪力、弯矩与外力间的关系外力FS图特征M图特征无外力段q=0水平直线xFSFS 0FSFS 0q0第32页/共127页材料力学33剪力图和弯矩图的定性分析FSFFF1F3F4FFF1M1F3F4M2qqF5F5MM1M2第33页/共127页材料力学34解:特殊点端点;分区点(外力变化点),即集中力(力偶)作用点,分布力开始和结束点等;驻点(剪力为零,弯矩取极值)。aaqaqA四、作内力图的简捷法利用内力和外力的关系及特殊点的内力值来作图的方法。用简捷作图法画图示梁的内力图。第34页/共127页材料力学35左端点:线形:根据;及集中载荷点的规律确定。分区点A:右端点:FSqa2MaaqaqAqa2qa第35页/共127页材料力学36 用简捷法画简支梁的内力图(AB=BC=CD=a)。解:求约束力A点右:B点左:B点右:C点左:M 的驻点:C点右:D点左:FSqa/2qa/2qa/23qa2/8qa2/2Mqa2/2qa2/2Dqqaqa2ABCFAFD第36页/共127页材料力学37外伸梁AB承受荷载如图所示,作该梁内力图解:1、求约束力DABCFS+_3(kN)4.23.8Ex=2.1mM(kNm)3.81.4132.2_+FAFB第37页/共127页材料力学38B3aACMe=3qa2aq作图示梁的剪力图和弯矩图解:1、支座约束力为:FAFBFS图5qa/3qa/38a/34qa2/3M图qa2/185qa2/3第38页/共127页材料力学391m0.5m1m3m1mBACDKEq=20kN/m M=5kNmF=50kN绘出图示有中间铰的静定梁的剪力弯矩图MA FAyFBy813129FS图(kN)1.45 m 96.515.53155345M图(kNm)第39页/共127页材料力学40适用条件:所求参数(内力、应力、位移)必须与荷载满足线性关系。即在弹性限度内满足虎克定律。五、按叠加原理作弯矩图1、叠加原理:多个载荷同时作用于结构而引起的内力等于每个载荷单独作用于结构而引起内力的代数和。第40页/共127页材料力学412、材料力学构件小变形、线性范围内必遵守此原理 叠加方法步骤:分别作出各项荷载单独作用下梁的弯矩图;将其相应的纵坐标叠加即可(注意:不是图形的简单拼凑)。3、对称性与反对称性的应用 对称结构在对称载荷作用下,FS图反对称,M图对称;对称结构在反对称载荷作用下,FS图对称,M图反对称。第41页/共127页材料力学42 M1+=+M2+按叠加原理作弯矩图(AB=2a,力P作用在梁AB的中点处)。qFABFB=AAB+qM+第42页/共127页材料力学43FLL0.5F0.5F0.5FFLLL0.5FFFFLLL00.5FLM20.5FL+M1+0.5FLFLM+第43页/共127页材料力学442FCl/2ABFl/2l/2M(1)选定外力的不连续点(如集中力、集中力偶的作用点,分布力的起点和终点等)为控制截面,求出控制截面的弯矩值。(2)分段画弯矩图。当控制截面之间无荷载时,该段弯矩图是直线图形。当控制截面之间有荷载时,用叠加法作该段的弯矩图。利用内力图的特性和弯矩图叠加法,将梁弯矩图的一般作法归纳如下:第44页/共127页材料力学45区段叠加法作弯矩图 设简支梁同时承受跨间荷载q与端部力矩MA、MB的作用。其弯矩图可由简支梁受端部力矩作用下的直线弯矩图与跨间荷载单独作用下简支梁弯矩图叠加得到。即+MBMAM0+MBMAM0BMBAqMAlB第45页/共127页材料力学46 改内力图之错。qABFSxM+qa/4qa/43qa/47qa/4qa2/449qa2/323qa2/25qa2/4a2aaqa2第46页/共127页材料力学47 已知FS图,求外载及M图(梁上无集中力偶)。FS(kN)x1m1m2m2315kN1kNq=2kN/m+M(kNm)+111.25第47页/共127页材料力学48一、平面刚架1、平面刚架:同一平面内,不同取向的杆件,通过杆端相 互刚性连接而组成的结构。特点:刚架各杆的内力有:FS、M、FN。2、内力图规定 弯矩图:画在各杆的受拉一侧,不注明正、负号。剪力图及轴力图:可画在刚架轴线的任一侧(通常正值画在刚架的外侧),但须注明正、负号。4.3 平面刚架和曲杆的内力图第48页/共127页材料力学49试作图示刚架的内力图。F1F2alABCFN 图F2+FS图F1+F1F1aM 图F1aF1a+F2 l第49页/共127页材料力学50F=2qa BCA2aa2aDq2qaFN图2qa2qaFS图2qa26qa2M图试作图示刚架的内力图第50页/共127页材料力学51二、平面曲杆:轴线为一平面曲线的杆件。内力情况及绘制方法与平面刚架相同。已知:如图所示,F及R。试绘制M、FS、FN 图。OFRqmmx解:建立极坐标,O为极点,OB 极轴,q表示截面mm的位置。AB第51页/共127页材料力学52OFRqmmxABABOM图OO+FS图FN 图2FRFF+第52页/共127页材料力学53 起吊一根自重为q(N/m)的等截面梁。问:起吊点位置x应为多少才最合理?ql/2ql/2提示:使梁的最大正弯矩与最大负弯矩的绝对值相等。解(x为负值无意义)取第53页/共127页材料力学541、弯曲构件横截面上的(内力)应力MFS内力剪力FSFS切应力弯矩MM正应力4.4 平面弯曲时梁横截面上的正应力第54页/共127页材料力学552、研究方法平面弯曲取纵向对称面研究纵向对称面F1F2FA AF1F2 B对称轴纵对称面FB 第55页/共127页材料力学56纯 某段梁的内力只有弯矩没弯 有剪力时,该段梁的变形曲 称为纯弯曲。如AB段。MM横力弯曲 某段梁的内力既有弯矩,又有剪力时,该段梁的变形称为横力弯曲。如AB以外段。FFaaABFQMFFFa第56页/共127页材料力学571、梁的纯弯曲实验(一)变形几何规律一、纯弯曲时梁横截面上的正应力中性层纵向对称面中性轴 横向线(a b、cd)变形后仍为直线,但有转动;纵向线变为曲线,且上缩下伸;横向线与纵向线变形后仍正交。bdacabcdMM第57页/共127页材料力学582、两个概念中性层:梁内一层纤维既不伸长也不缩短,因而纤维不受拉应力和压应力,此层纤维称中性层。中性轴:中性层与横截面的交线。中性层纵向对称面中性轴意义:中性层将梁分成两个区域:凹侧缩短受压,凸侧伸长受拉。而中性轴上的正应力为零。弯曲变形可看作横截面绕自己的中性轴转动。第58页/共127页材料力学593、推论平面假设:横截面变形后仍为平面,只是绕中性轴发生转动,距中性轴等高处,变形相等。横截面上只有正应力。y 轴纵对称轴 z 轴 中性轴 yz横截面y y 坐标相同的点所在纵线变形相同,因而应力相同,所以 =(y)第59页/共127页材料力学604、几何方程MMmmnnaabbmabmanbn第60页/共127页材料力学61CABryO1O2B1dqdxr 中性层的曲率半径第61页/共127页材料力学62(二)物理关系假设:纵向纤维互不挤压。于是,任意一点均处于单项 应力状态。xx即横截面上的正应力沿垂直于中性轴的方向按直线规律变化。max M第62页/共127页材料力学63(三)静力学关系 对称弯曲时此条件自动满足。即中性轴z是形心轴。得zOyzdA dAyx第63页/共127页材料力学64得这是纯弯梁变形时中性层曲率的表达式。EIz称为梁的抗弯刚度。zOyzdA dAyx第64页/共127页材料力学65 弯曲正应力计算公式弯曲正应力沿截面高度线性分布,中性轴上为零,距中性轴越远,数值越大。max M第65页/共127页材料力学66当中性轴 z 不是横截面的对称轴时Ozyyt,maxyc,max第66页/共127页材料力学67 当中性轴 z 为横截面的对称轴时yzzybhmax M 称为抗弯截面系数(模量)单位:m3 或mm3根据变形来判断最大拉压应力,其数值相等。第67页/共127页材料力学68简单截面的抗弯截面系数 矩形截面zybh 圆形截面yzd第68页/共127页材料力学69(4)型钢截面:参见型钢表式中 空心圆截面DOdyz第69页/共127页材料力学70二、横力弯曲时梁横截面上的正应力1、横力弯曲变形特点 横力弯曲时:由于切应力的存在梁的横截面发生翘曲;横向力还使各纵向线之间发生挤压。平面假设和纵向线之间无挤压的假设实际上都不再成立。第70页/共127页材料力学712、横力弯曲时的正应力 采用纯弯曲正应力公式,当梁的跨高比 l/h 5 时,误差 d 2,因此,对细长梁,无论纯弯曲还是横力弯曲,横截面上的正应力都可用下式计算:第71页/共127页材料力学72图示简支梁由56a号工字钢制成,已知F=150kN。试求危险截面上的最大正应力max 和同一横截面上翼缘与腹板交界处a点处的正应力a。B5 m10 mAF C 12.521166560za 解:1、作弯矩图如上,M375KNm第72页/共127页材料力学732、查型钢表得56号工字钢3、求正应力为 12.521166560za第73页/共127页材料力学742012020120单位:mm如图所示悬臂梁,自由端承受集中载荷F=15kN作用。试计算截面B-B的最大拉应力与最大压应力。解:1、确定截面形心位置 选参考坐标系zoy如图示,将截面分解为I和II两部分,形心C的纵坐标为:III第74页/共127页材料力学752、计算截面惯性矩2012020120单位:mmIII第75页/共127页材料力学763、计算最大弯曲正应力 在截面B的上、下边缘,分别作用有最大拉应力和最大压应力,其值分别为:截面BB的弯矩为第76页/共127页材料力学771、两点假设 切应力与剪力平行;与中性轴等距离处,切应力相等。2、研究方法:分离体平衡。在梁上取微段如图a;dxxFS(x)+dFS(x)M(x)M(x)+dM(x)FS(x)dx图a图bxyzFN21bFN1在微段上取一块如图b,平衡4.5 梁横截面上的切应力一、矩形截面梁横截面上的切应力第77页/共127页材料力学78由切应力互等定理其中Sz*为y点以下的面积对中性轴之静矩;dxxFS(x)+dFS(x)M(x)M(x)+d M(x)FS(x)dx图a图bxyzFN21bFN1第78页/共127页材料力学79 FS 截面剪力 Sz 计算点外侧面积A 对中性轴的静矩Iz整个截面对中性轴 的形心主惯性矩 b 计算点处截面宽度 yFSyzhbA第79页/共127页材料力学80(上、下边缘)=0y=0(中性轴)3、矩形截面切应力的分布hzyyb 沿截面高度按抛物线规律分布maxzyOmax第80页/共127页材料力学811、腹板上的切应力二、工字形截面梁ydhzOdbydAzyOA*dxxdISFzz*S=第81页/共127页材料力学82腹板与翼缘交界处中性轴处maxminmaxzyO第82页/共127页材料力学83ydhzOdby2、翼缘上的切应力因为翼缘的上、下表面无切应力,所以翼缘上、下边缘处平行于y 轴的切应力为零;(1)平行于y轴的切应力可见翼缘上平行于y轴的切应力很小,工程上一般不考虑。计算表明,工字形截面梁的腹板承担的剪力第83页/共127页材料力学84(2)垂直于y轴的切应力ydhzOdb1yd11第84页/共127页材料力学85即翼缘上垂直于y轴的切应力随按线性规律变化。且通过类似的推导可以得知,薄壁工字刚梁上、下翼缘与腹板横截面上的切应力指向构成了“切应力流”。zyOmaxmaxmin1max第85页/共127页材料力学86三、圆截面梁关于其切应力分布的假设:1、离中性轴为任意距离y的水平直线段上各点处的切应力汇交于一点;2、这些切应力沿 y方向的分量y沿宽度相等。切应力的分布特征:边缘各点切应力的方向与圆周相切;切应力分布与y 轴对称;与y轴相交各点处的切应力其方向与y轴一致。zyOmaxkkOd第86页/共127页材料力学87最大切应力max 在中性轴z处yzOC2d/3pzyOmaxkkOd第87页/共127页材料力学88 中性轴上各点:t tFS 均匀分布四、薄壁圆环形截面 maxyz第88页/共127页材料力学891、危险面与危险点分析一般截面,最大正应力发生在弯矩绝对值最大的截面的上下边缘上;最大切应力发生在剪力绝对值最大的截面的中性轴处。FSM一、梁的正应力和切应力强度条件4.4 4.5 梁的抗弯强度条件第89页/共127页材料力学902、正应力和切应力强度条件带翼缘的薄壁截面,最大正应力与最大切应力的情况与上述相同;还有一个可能危险的点,在FS 和M均很大的截面的腹、翼相交处。(以后讲)MFS中性轴为横截面对称轴的等直梁正应力强度条件第90页/共127页材料力学91为充分发挥材料的强度,最合理的设计为拉、压强度不相等的铸铁等脆性材料制成的梁Ozyyt,maxyc,max第91页/共127页材料力学92切应力强度条件一般讲,梁的强度主要考虑正应力,但在下列情况下,也校核切应力强度。梁跨度较小,或支座附近有较大载荷;T形、工字形等薄壁截面梁;焊接、铆接、胶合而成的梁,要对焊缝、胶合面等进 行剪切强度计算。第92页/共127页材料力学93校核强度:设计截面尺寸:确定载荷:3、强度条件应用:依此强度准则可进行三种强度计算:确定截面尺寸设计截面时验证第93页/共127页材料力学94解:画内力图求危险面内力M+FQ+矩形(bh=0.12m0.18m)截面木梁如图,=7MPa,=0.9 M Pa,试求最大正应力和最大切应力之比,并校核梁的强度。Bq=3.6kN/mAL=3m第94页/共127页材料力学95求最大应力并校核强度应力之比FQ+M+Bq=3.6kN/mAL=3m第95页/共127页材料力学96y1y2GA1A2解:画弯矩图并求危面内力T 字形截面的铸铁梁受力如图,铸铁的t=30MPa,c=60 MPa,其截面形心位于C点,y1=52mm,y2=88mm,Iz=763cm4 ,试校核此梁的强度。并说明T字梁怎样放置更合理?4画危险面应力分布图,找危险点F1=9kN1m1m1mF2=4kNABCDx2.5kNm-4kNmMA4A3第96页/共127页材料力学97校核强度T字头在上面合理。若改成右图放置,不合理。y1y2GA3A4A3y1y2GA1A2A4x2.5kNm-4kNmM第97页/共127页材料力学98T形梁如图所示,已知c=100MPa,t=50MPa,=40MPa,yc=17.5mm,Iz=18.2104mm4。求:1)C左侧截面E点的正应力、切应力;2)校核梁的正应力、切应力强度条件。CAB40401010yc解:约束力为1FS0.250.75(kN)_+M(kN.m)0.250.5+_内力图及截面内力第98页/共127页材料力学99该梁满足强度要求第99页/共127页材料力学100解:根据截面最为合理的要求跨长 l=2m 的铸铁梁受力如图,已知铸铁的许用拉应力 t=30 MPa,许用压应力 c =90 MPa。试根据截面最为合理的要求,确定T字形梁横截面的尺寸d,并校核梁的强度。1m2mBAF=80 kNCy1y2z60220yC280d第100页/共127页材料力学101得截面对中性轴的惯性矩为y1y2z60220yC280d即第101页/共127页材料力学102梁上的最大弯矩于是最大压应力为即梁满足强度要求。y1y2z60220yC280dCc,maxt,maxz第102页/共127页材料力学103 图示槽形截面铸铁梁,已知:b=2m,截面对中性轴的惯性矩 Iz=5493104mm4,铸铁的许用拉应力 t=30 MPa,许用压应力 c =90 MPa。试求梁的许可荷载F 。zyC形心86134204018012020BF Cbq=F/bDbbAFB FA 解:1、梁的约束力为第103页/共127页材料力学104发生在截面C发生在截面B据此作出梁的弯矩图如下Fb/2Fb/4zyC形心86134204018012020BF Cbq=F/bDbbA第104页/共127页材料力学1052、计算最大拉、压正应力可见:压应力强度条件由B截面控制,拉应力强度条件则B、C截面都要考虑。zyC形心86134204018012020Fb/2Fb/4拉应力C截面B截面压应力拉应力压应力第105页/共127页材料力学106考虑截面B:zyC形心86134204018012020Fb/2Fb/4第106页/共127页材料力学107因此梁的强度由截面B上的最大拉应力控制考虑截面C:zyC形心86134204018012020Fb/2Fb/4第107页/共127页材料力学108跨度 l=4m 的箱形截面简支梁,沿全长受均布载荷q作用,该梁是用四块木板胶合而成如图所示。已知材料为红松,许用正应力=10MPa,许用切应力=1MPa,胶合缝的许用切应力=0.5MPa。试求该梁的容许载荷集度q的值。yz20100100201802404545BlAqql 2FQ ql28l/2M 第108页/共127页材料力学1092、由正应力确定许可载荷解:1、最大弯矩、最大剪力yz20100100201802404545第109页/共127页材料力学110yz201001002018024045453、校核切应力强度条件 第110页/共127页材料力学1114.6 4.6 梁的合理设计梁的合理设计 其中以弯曲正应力为主。1、合理安排梁的受力情况;2、合理选择截面形状;3、采用变截面梁和等强度梁。依据第111页/共127页材料力学1121、合理安排梁的受力 合理安排支座减小最大弯矩l/2qlql2/8BAqlaal/2ECDqa22ql2qla-8 2时max0.0214ql2207.0MMMlaCB=当第112页/共127页材料力学113合理安排梁的受力合理安排梁的受力第113页/共127页材料力学114 合理安排梁的受力lFl4 FFl4l4l2Fl8第114页/共127页材料力学115 合理安排梁的受力合理加载合理加载第115页/共127页材料力学1162、合理选择截面形状合理选择截面形状 由 MmaxWz ,W/A越大越合理dh0.167h0.125d(0.270.31)hhhbz第116页/共127页材料力学117若t=c,那种截面最合理?选择合理的截面形状第117页/共127页材料力学118 对于s st s sc 的材料,应使 s stmax=s st,s scmax=s sc,如铸铁选择合理的截面形状选择合理的截面形状第118页/共127页材料力学119图示铸铁梁怎样放置最合理?选择合理的截面形状第119页/共127页材料力学120图示铸铁梁那种截面最合理?选择合理的截面形状第120页/共127页材料力学1213 3、采用变截面梁、采用变截面梁 不同截面的弯矩是不同的,可使梁的截面按照弯矩的变化规律变化,弯矩大的截面,截面积也大些。第121页/共127页材料力学122 若梁的各横截面上的最大正应力都达到材料的许用应力,则称为等强度梁(鱼腹梁)。(a)l2Fh(x)b(b)Fl2 Fl4第122页/共127页材料力学123 特点:每个截面 max=如等高梁,h=常数由等强度梁采用变截面梁得第123页/共127页材料力学124A,B 附近还应满足切应力强度要求等强度梁采用变截面梁第124页/共127页材料力学125等强度梁采用变截面梁等强度梁是一种理想的变截面梁。但是,考虑到加工制造以及构造上的需要等,实际构件往往设计成近似等强的。将此等强度梁分成若干狭条,可叠置成叠板弹簧。第125页/共127页材料力学126本章结束第126页/共127页材料力学中南大学土木建筑学院127感谢您的观看!第127页/共127页