立体几何中的向量方法一平行和垂直用.pptx
lAP直线的方向向量直线的向量式方程 换句话说换句话说,直线上的非零向量直线上的非零向量叫做叫做直线的直线的方向向量方向向量一、方向向量与法向量第1页/共25页2、平面的法向量、平面的法向量AlP平面平面 的向量式方程 换句话说换句话说,与平面垂直的与平面垂直的非零向量非零向量叫做平面叫做平面的的法法向量向量第2页/共25页oxyzABCO1A1B1C1例1.如图所示,正方体的棱长为1(1)直线OA的一个方向向量坐标为_(2)平面OABC 的一个法向量坐标为_(3)平面AB1C 的一个法向量坐标为_(-1,-1,1)(0,0,1)(1,0,0)第3页/共25页第4页/共25页第5页/共25页 练习练习 如图,在四棱锥如图,在四棱锥P-ABCD中,底面中,底面ABCD是是正方形,侧棱正方形,侧棱PD 底面底面ABCD,PD=DC=1,E是是PC的中点,的中点,求平面求平面EDB的一个法向量的一个法向量.ABCDP PE E解:如图所示建立空间直角坐标系解:如图所示建立空间直角坐标系.XYZ设平面EDB的法向量为第6页/共25页 因为方向向量与法向量可以确定因为方向向量与法向量可以确定直线和平面的位置,所以我们可以利直线和平面的位置,所以我们可以利用直线的用直线的方向向量方向向量与平面的与平面的法向量法向量表表示空间直线、平面间的示空间直线、平面间的平行、垂直、平行、垂直、夹角、距离夹角、距离等位置关系等位置关系.用向量方法解决立体问题第7页/共25页二、立体几何中的向量方法二、立体几何中的向量方法证明平行与垂直证明平行与垂直第8页/共25页ml(一)(一).平行关系:平行关系:第9页/共25页第10页/共25页第11页/共25页(二)、垂直关系:(二)、垂直关系:lm第12页/共25页lABC第13页/共25页第14页/共25页例例1.用向量方法证明用向量方法证明 定理定理 一个平面内的两条相交直线与另一个平面平行一个平面内的两条相交直线与另一个平面平行,则这两个平面平行则这两个平面平行已知已知 直线直线l与与m相交相交,第15页/共25页 例例2 四棱锥四棱锥P-ABCD中,底面中,底面ABCD是正方是正方形形,PD 底面底面ABCD,PD=DC=6,E是是PB的的中点,中点,DF:FB=CG:GP=1:2.求证:求证:AE/FG.ABCDP PG GXYZF FE EA(6,0,0),F(2,2,0),E(3,3,3),G(0,4,2),AE/FG 证证 :如图所示:如图所示,建立建立空间直角坐标系空间直角坐标系./AEAE与与FGFG不共线不共线几何法呢?几何法呢?第16页/共25页 例例3 四棱锥四棱锥P-ABCD中,底面中,底面ABCD是正是正方形,方形,PD 底面底面ABCD,PD=DC,E是是PC的的中点,中点,(1)求证:求证:PA/平面平面EDB.ABCDP PE EXYZG解解1 立体立体几何法几何法第17页/共25页ABCDP PE EXYZG解解2:如图所示建立空间直角坐标系,点:如图所示建立空间直角坐标系,点D为坐标原点,设为坐标原点,设DC=1(1)证明:连结证明:连结AC,AC交交BD于点于点G,连结连结EG第18页/共25页ABCDP PE EXYZ解解3:如图所示建立空间直角坐标系,点:如图所示建立空间直角坐标系,点D为坐标原点,设为坐标原点,设DC=1(1)证明:证明:设平面EDB的法向量为第19页/共25页ABCDP PE EXYZ解解4:如图所示建立空间直角坐标系,点:如图所示建立空间直角坐标系,点D为坐标原点,设为坐标原点,设DC=1(1)证明:证明:解得解得 x,第20页/共25页A1xD1B1ADBCC1yzEF是BB1,1,,CD中点,求证:D1F 例4 4 正方体中,E、F分别平面ADE.证明:设正方体棱长为1,为单位正交 基底,建立如图所示坐标系D-xyz,所以第21页/共25页A1xD1B1ADBCC1yzEF是BB1,1,,CD中点,求证:D1F 例4 4 正方体中,E、F分别平面ADE.证明2:第22页/共25页,E,E是AA1 1中点,例5 5 正方体平面C1 1BD.证明:E求证:平面EBD设正方体棱长为2,建立如图所示坐标系平面平面C1BD的一个法向量是的一个法向量是E(0,0,1)D(0,2,0)B(2,0,0)设平面设平面EBD的一个法向量是的一个法向量是平面C1 1BD.平面EBD第23页/共25页 证明2:E,E,E是AA1 1中点,例5 5 正方体平面C1 1BD.求证:平面EBD第24页/共25页感谢您的观看!第25页/共25页