随机数学于永光概率论与数理统计JA分析.pptx
第七章 参数估计3 区间估计 区间估计就是根据样本给出未知参数的一个范围,并希望知道这个范围包含该参数的可信程度。第1页/共34页第七章 参数估计3 区间估计一、置信区间与置信度定义:第2页/共34页第七章 参数估计3 区间估计通常,采用95%的置信度,有时也取99%或90%.例1第3页/共34页第七章 参数估计3 区间估计则 即 则 第4页/共34页第七章 参数估计3 区间估计求置信区间的步骤:第5页/共34页第七章 参数估计1)均值的区间估计(1)方差已知时,估计均值第七章 参数估计3 区间估计二、一个正态总体未知参数的置信区间第6页/共34页第七章 参数估计即:3 区间估计第7页/共34页第七章 参数估计推得,随机区间:3 区间估计.1的置信区间的置信度为是a am m-第8页/共34页第七章 参数估计3 区间估计说明:(1)置信区间不唯一,在置信度固定的条件下,置信区间越短,估计精度越高。(2)在置信度固定的条件下,n 越大,置信区间越短,估计精度越高。(3)在样本量 n 固定时,置信度越大,置信区间越长,估计精度越低。第9页/共34页第七章 参数估计3 区间估计例1 已知幼儿身高服从正态分布,现从56岁的幼儿中随机地抽查了9人,其高度分别为:115,120,131,115,109,115,115,105,110(cm);第10页/共34页第七章 参数估计(2)方差未知时,估计均值3 区间估计第11页/共34页第七章 参数估计由此得:3 区间估计第12页/共34页第七章 参数估计推得,置信区间为:3 区间估计例2 用仪器测量温度,重复测量7次,测得温度分别为:120,113.4,111.2,114.5,112.0,112.9,113.6度;设温度第13页/共34页第七章 参数估计2)方差的区间估计3 区间估计第14页/共34页第七章 参数估计3 区间估计第15页/共34页第七章 参数估计由此得:3 区间估计这就是说,置信区间为:第16页/共34页第七章 参数估计例3 设某机床加工的零件长度今抽查16个零件,测得长度(单位:mm)如下:12.15,12.12,12.01,12.08,12.09,12.16,12.03,12.01,12.06,12.13,12.07,12.11,12.08,12.01,12.03,12.06,在置信度为95%时,试求总体方差 的置信区间.第17页/共34页一个正态总体未知参数的置信区间待估参数待估参数随机变量随机变量随机变量随机变量的分布的分布双侧置信区间的上、下限双侧置信区间的上、下限第18页/共34页三、两个正态总体中未知参数的置信区间第七章 参数估计3 区间估计第19页/共34页两个正态总体未知参数的置信区间(一)待估参数待估参数随机变量随机变量随机变量随机变量的分布的分布双侧置信区间的上、下限双侧置信区间的上、下限第20页/共34页两个正态总体未知参数的置信区间(二)待估待估参数参数随机变量随机变量随机变量随机变量的分布的分布 双侧置信区间的上、下限双侧置信区间的上、下限第21页/共34页例4 4第七章 参数估计3 区间估计第22页/共34页第七章 参数估计3 区间估计由有第23页/共34页第七章 参数估计3 区间估计第24页/共34页例5 5第七章 参数估计3 区间估计第25页/共34页第七章 参数估计3 区间估计取第26页/共34页第七章 参数估计3 区间估计第27页/共34页四、(0-10-1)分布参数的置信区间第七章 参数估计3 区间估计由中心极限定理知近似服从于是有第28页/共34页第七章 参数估计3 区间估计而不等式等价于记第29页/共34页第七章 参数估计3 区间估计此处例2 设在一大批产品中抽取100个产品,得一级品60个,求这批产品一级品率p的置信度0.95的置信区间。解:一级品率p是(0-1)分布的参数,此处 n=100,第30页/共34页第七章 参数估计3 区间估计于是故得 p 的置信度0.95的置信区间为(0.50,0.69)。第31页/共34页第七章 参数估计3 区间估计五、单侧置信区间定义:第32页/共34页第七章 参数估计3 区间估计例:对于正态总体 均值的单侧区间估计由此得则第33页/共34页感谢您的观看!第34页/共34页