高中数学水平考知识点归纳.doc
_高中数学程度考知识点归纳在复习高中数学程度考时,学生们应该懂得怎样去总结知识点。下面就是WTT给大家带来的高中数学学业程度考知识点,希望能帮助到大家!高中数学学业程度考知识点11、圆的定义平面内到一定点的间隔 等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。2、圆的方程(1)标准方程,圆心,半径为r;(2)一般方程当时,方程表示圆,此时圆心为,半径为当时,表示一个点;当时,方程不表示任何图形。(3)求圆方程的方法:一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,假设利用圆的标准方程,需求出a,b,r;假设利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。3、直线与圆的位置关系直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线,圆,圆心到l的间隔 为,那么有(2)过圆外一点的切线:k不存在,验证是否成立k存在,设点斜式方程,用圆心到该直线间隔 =半径,求解k,得到方程【一定两解】(3)过圆上一点的切线方程:圆(_-a)2+(y-b)2=r2,圆上一点为(_0,y0),那么过此点的切线方程为(_0-a)(_-a)+(y0-b)(y-b)=r24、圆与圆的位置关系通过两圆半径的和(差),与圆心距(d)之间的大小比拟来确定。设圆两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比拟来确定。当时两圆外离,此时有公切线四条;当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当时两圆相交,连心线垂直平分公共弦,有两条外公切线;当时,两圆内切,连心线经过切点,只有一条公切线;当时,两圆内含;当时,为同心圆。注意:圆上两点,圆心必在中垂线上;两圆相切,两圆心与切点共线圆的辅助线一般为连圆心与切线或者连圆心与弦中点高中数学学业程度考知识点21、导数的定义:在点处的导数记作.2.导数的几何物理意义:曲线在点处切线的斜率k=f/(_0)表示过曲线y=f(_)上P(_0,f(_0)切线斜率。V=s/(t)表示即时速度。a=v/(t)表示加速度。3.常见函数的导数公式:;。4.导数的四那么运算法那么:5.导数的应用:(1)利用导数判断函数的单调性:设函数在某个区间内可导,假如,那么为增函数;假如,那么为减函数;注意:假如为减函数求字母取值范围,那么不等式恒成立。(2)求极值的步骤:求导数;求方程的根;列表:检验在方程根的左右的符号,假如左正右负,那么函数在这个根处获得极大值;假如左负右正,那么函数在这个根处获得极小值;(3)求可导函数值与最小值的步骤:求的根;把根与区间端点函数值比拟,的为值,最小的是最小值。高中数学学业程度考知识点3集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。2、集合的中元素的三个特性:1.元素确实定性;2.元素的互异性;3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。(2)任何一个给定的集合中,任何两个元素都是不同的对象,一样的对象归入一个集合时,仅算一个元素。(3)集合中的元素是平等的,没有先后顺序,因此断定两个集合是否一样,仅需比拟它们的元素是否一样,不需考察排列顺序是否一样。(4)集合元素的三个特性使集合本身具有了确定性和整体性。3、集合的表示:如我校的篮球队员,太平洋,大西洋,印度洋,北冰洋1.用拉丁字母表示集合:A=我校的篮球队员,B=1,2,3,4,52.集合的表示方法:列举法与描绘法。注意啊:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N_或N+整数集Z有理数集Q实数集R关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作aA,相反,a不属于集合A记作a?A列举法:把集合中的元素一一列举出来,然后用一个大括号括上。描绘法:将集合中的元素的公共属性描绘出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。语言描绘法:例:不是直角三角形的三角形数学式子描绘法:例:不等式_-3>2的'解集是_?R_-3>2或_-3>24、集合的分类:1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合3.空集不含任何元素的集合例:_2=-5高中数学学业程度考知识点4集合的分类(1)按元素属性分类,如点集,数集。(2)按元素的个数多少,分为有/无限集关于集合的概念:(1)确定性:作为一个集合的元素,必须是确定的,这就是说,不能确定的对象就不能构成集合,也就是说,给定一个集合,任何一个对象是不是这个集合的元素也就确定了。(2)互异性:对于一个给定的集合,集合中的元素一定是不同的(或说是互异的),这就是说,集合中的任何两个元素都是不同的对象,一样的对象归入同一个集合时只能算作集合的一个元素。(3)无序性:判断一些对象时候构成集合,关键在于看这些对象是否有明确的标准。集合可以根据它含有的元素的个数分为两类:含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。非负整数全体构成的集合,叫做自然数集,记作N;在自然数集内排除0的集合叫做正整数集,记作N+或N_;整数全体构成的集合,叫做整数集,记作Z;有理数全体构成的集合,叫做有理数集,记作Q;(有理数是整数和分数的统称,一切有理数都可以化成分数的形式。)实数全体构成的集合,叫做实数集,记作R。(包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。数学上,实数直观地定义为和数轴上的点一一对应的数。)1.列举法:假如一个集合是有限集,元素又不太多,常常把集合的所有元素都列举出来,写在花括号“”内表示这个集合,例如,由两个元素0,1构成的集合可表示为0,1.有些集合的元素较多,元素的排列又呈现一定的规律,在不致于发生误解的情况下,也可以列出几个元素作为代表,其他元素用省略号表示。例如:不大于100的自然数的全体构成的集合,可表示为0,1,2,3,100.无限集有时也用上述的列举法表示,例如,自然数集N可表示为1,2,3,n,.2.描绘法:一种更有效地描绘集合的方法,是用集合中元素的特征性质来描绘。例如:正偶数构成的集合,它的每一个元素都具有性质:“能被2整除,且大于0”而这个集合外的其他元素都不具有这种性质,因此,我们可以用上述性质把正偶数集合表示为_R_能被2整除,且大于0或_R_=2n,nN+,大括号内竖线左边的_表示这个集合的任意一个元素,元素_从实数集合中取值,在竖线右边写出只有集合内的元素_才具有的性质。一般地,假如在集合I中,属于集合A的任意一个元素_都具有性质p(_),而不属于集合A的元素都不具有的性质p(_),那么性质p(_)叫做集合A的一个特征性质。于是,集合A可以用它的性质p(_)描绘为_Ip(_)它表示集合A是由集合I中具有性质p(_)的所有元素构成的,这种表示集合的方法,叫做特征性质描绘法,简称描绘法。例如:集合A=_R_2-1=0的特征是_2-1=0高中数学学业程度考知识点5函数的表示方法1.函数的三种表示方法列表法图象法解析法2.分段函数:定义域的不同局部,有不同的对应法那么的函数。注意两点:分段函数是一个函数,不要误认为是几个函数。分段函数的定义域是各段定义域的并集,值域是各段值域的并集。考点四、求定义域的几种情况假设f(_)是整式,那么函数的定义域是实数集R;假设f(_)是分式,那么函数的定义域是使分母不等于0的实数集;假设f(_)是二次根式,那么函数的定义域是使根号内的式子大于或等于0的实数集合;假设f(_)是对数函数,真数应大于零。.因为零的零次幂没有意义,所以底数和指数不能同时为零。假设f(_)是由几个局部的数学式子构成的,那么函数的定义域是使各局部式子都有意义的实数集合;假设f(_)是由实际问题抽象出来的函数,那么函数的定义域应符合实际问题高中数学程度考知识点归纳第 10 页 共 10 页