二项式定理-二项式.ppt
二项式定理二项式定理二项式定理二项式定理(a+b)2 (a+b)3 那么将(a+b)4 ,(a+b)5.展开后,它们的各项是什么呢?C20 a2+C21 ab+C22 b2=C30a3+C31a2b+C32ab2+C33 b3=a3+3a2b+3ab2+b3=a2+2ab+b2(a+b)2(a+b)(a+b)展开后其项的形式为:a2,ab,b2这三项的系数为各项在展开式中出现的次数.考虑b:每个都不取b的情况有C20 种,则a2前的系数为C20恰有1个取b的情况有C21种,则ab前的系数为C21恰有2个取b的情况有C22 种,则b2前的系数为C22(a+b)2 =a2+2ab+b2 C20 a2+C21 ab+C22 b2(a+b)3=a3+3a2b+3ab2+b3=C30a3+C31a2b+C32ab2+C33 b3对对(a+b)2展开式的分析展开式的分析(a+b)4(a+b)(a+b)(a+b)(a+b)?1)(a+b)4展开后各项形式分别是什么?2)各项前的系数代表着什么?a4 a3b a2b2 ab3 b4各项前的系数 代表着这些项在展开式中出现的次数问题每个都不取b的情况有1种,即C40,则a4前的系数为C40恰有1个取b的情况有C41种,则a3b前的系数为C41恰有2个取b的情况有C42 种,则a2b2前的系数为C42恰有3个取b的情况有C43 种,则ab3前的系数为C43恰有4个取b的情况有C44种,则b4前的系数为C44则 (a+b)4 C40 a4 C41 a3b C42 a2b2 C43 ab3 C44 b43)你能分析说明各项前的系数吗?a4 a3b a2b2 ab3 b4(a+b)n=?二项展开式定理每个都不取b的情况有1种,即Cn0,则an前的系数为Cn0恰有1个取b的情况有Cn1种,则an-1b前的系数为Cn1恰有2个取b的情况有Cn2 种,则an-2b2前的系数为Cn2.恰有r个取b的情况有Cnr 种,则an-rbr前的系数为Cnr.恰有n个取b的情况有Cnn 种,则bn前的系数为Cnn右边的多项式叫做(a+b)n的二项展开式Cnr an-rbr:二项展开式的通项,记作Tr+1Cnr:二项式系数二项展开式共有n+1项各项中a的指数从n起依次减小1,到0为此 各项中b的指数从0起依次增加1,到n为此如(1+x)n=1+Cn1 x+Cn2 x2+Cnr xr+xn注二项展开式定理Cnr an-rbr:二项展开式的通项,记作Tr+1Cnr:二项式系数二项展开式共有n+1项各项中a的指数从n起依次减小1,到0为此 各项中b的指数从0起依次增加1,到n为此如(1+x)n=1+Cn1 x+Cn2 x2+Cnr xr+xn求(1+2x)7的展开式的第4项注:注:1)注意对二项式定理的灵活应用 2)注意区别二项式系数与项的系数的概念二项式系数:Cnr;项的系数:二项式系数与数字系数的积 3)求二项式系数或项的系数的一种方法是将二项式展开第4项的二项式系数第4项的系数(1)求(1+2x)7的展开式的第4项的系数解(1)(1+2x)7的展开式的第4项是T3+1=C7317-3(2x)3 =3523x3 =280 x3解分析:先化简再运用公式分析:先求出x3是展开式的哪一项,再求它的系数(1)求(1+2x)7的展开式的第4项9-2r=3r=3x3系数是 (-1)3C93=-84求(x+a)12的展开式中的倒数第4项解:(x+a)12的展开式有13项,倒数第4项是它的第10项解:练习 求求 的展开式的中间两项的展开式的中间两项 解:展开式共有10项,中间两项是第5、6项。练习1)注意二项式定理中二项展开式的特征2)区别二项式系数,项的系数3)掌握用通项公式求二项式系数,项的系数及项小结