欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    《状态方程的解》PPT课件.ppt

    • 资源ID:80446227       资源大小:1.11MB        全文页数:59页
    • 资源格式: PPT        下载积分:11.9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要11.9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    《状态方程的解》PPT课件.ppt

    2 2 状态方程的解状态方程的解2 2 状态方程的解状态方程的解1 1、相关知识、相关知识2 2、齐次状态方程的解、齐次状态方程的解若为标量微分方程:若为标量微分方程:拉氏变换拉氏变换拉氏反变换拉氏反变换标量微分方程为矩阵微分方程标量微分方程为矩阵微分方程n=1n=1的特例的特例(1 1)说明)说明称状态转移矩阵,将状态由称状态转移矩阵,将状态由t t0 0时刻的时刻的x(tx(t0 0)转移到转移到t t时刻时刻的的x(t)x(t)状态由状态由t t时刻转移到时刻转移到t t0 0时刻的转移矩阵时刻的转移矩阵(2 2)矩阵指数的性质)矩阵指数的性质设设P P是与是与A A同阶的非奇异矩阵,则有同阶的非奇异矩阵,则有求求eAt的一种的一种方法方法矩阵指数的性质矩阵指数的性质传递性传递性意义:解可以分段求意义:解可以分段求(3 3)几个特殊的状态转移矩阵)几个特殊的状态转移矩阵(可直接使用!可直接使用!)A A为对角阵为对角阵几个特殊的状态转移矩阵几个特殊的状态转移矩阵A A为约当块为约当块几个特殊的状态转移矩阵几个特殊的状态转移矩阵A A为约当矩阵为约当矩阵几个特殊的状态转移矩阵几个特殊的状态转移矩阵A A通过非奇异阵通过非奇异阵P P化为对角形矩阵化为对角形矩阵(4)(4)矩阵指数的计算方法矩阵指数的计算方法:直接法直接法(一般不用一般不用)一般用于计算机求解一般用于计算机求解当当A A为特殊矩阵,如幂零阵,可用此法为特殊矩阵,如幂零阵,可用此法底友零阵,实质是特征根为底友零阵,实质是特征根为0 0的约当块的约当块例例已知已知 求求矩阵指数的计算方法矩阵指数的计算方法:拉氏变换法拉氏变换法(常用常用)迭迭代代公公式式例例例例矩阵指数的计算方法矩阵指数的计算方法:凯莱凯莱-哈密尔顿法哈密尔顿法本质:化本质:化无穷级数无穷级数为为有限项之和有限项之和(1)(1)凯莱凯莱-哈密尔顿定理哈密尔顿定理(2)(2)化化 为为A A的有限项的有限项(3)(3)的计算的计算1)A特征值互异时特征值互异时求解步骤求解步骤例例2)A有重特征根A有一个重特征根有一个重特征根 为为m重重为单根,为单根,(n-m)个单根个单根例例矩阵指数的计算方法矩阵指数的计算方法:特征值与特征向量法特征值与特征向量法任一矩阵任一矩阵A A都可通过非奇异线性变换阵都可通过非奇异线性变换阵P P变成对角形或约当形。变成对角形或约当形。根据线性代数知识,有:根据线性代数知识,有:任意矩阵任意矩阵A A都可化为约当标准形(含对角形);都可化为约当标准形(含对角形);A A化对角形化对角形 A A有有n n个线性无关的特征向量;个线性无关的特征向量;A A化对角形化对角形 A A有有n n个不同的特征值(不同特征值对应特征向量线性无个不同的特征值(不同特征值对应特征向量线性无关,这样就有关,这样就有n n个线性无关特征向量)个线性无关特征向量)特征值特征值对应于特征值对应于特征值 的特征向量的特征向量A A有有n n个不同特征值个不同特征值例例求求(1)求特征值求特征值(2)(2)求特征向量求特征向量推广推广P不唯一当当A为底友矩阵时,且有为底友矩阵时,且有n个不同特征根个不同特征根A A有重特征值有重特征值线性无关解线性无关解的特征向量的特征向量的广义特征向量的广义特征向量00k-1r+1k-1r+1说明说明 当当A A为底友矩阵时,假设为底友矩阵时,假设 为为3 3重根重根例例求求3 3、非齐次状态方程的解、非齐次状态方程的解零输入解零输入解零状态解零状态解系统两部分的构成说明:非齐次状态方程的响应满足线性系统的叠系统两部分的构成说明:非齐次状态方程的响应满足线性系统的叠加原理。加原理。适当选取适当选取u(t)u(t)可获得系统状态的最佳轨线。可获得系统状态的最佳轨线。例例状态转移矩阵已求出:状态转移矩阵已求出:非齐次状态方程的解为:非齐次状态方程的解为:2 2 状态方程的解状态方程的解1 1、n n阶齐次状态方程阶齐次状态方程解的形式:解的形式:状态转移矩状态转移矩阵阵假设系统有假设系统有n个初始状态个初始状态 线性无关线性无关则与之对应有则与之对应有n个解个解基础解基础解特殊的初始解特殊的初始解结论:结论:是个特殊的基础解,初始状态为单位向量。是个特殊的基础解,初始状态为单位向量。一般不易求,更多用于理论分析。一般不易求,更多用于理论分析。当当 与与 可交换时,有:可交换时,有:与与 有区别,性质比有区别,性质比 少。少。例例2 2、时变系统非齐次状态方程的解、时变系统非齐次状态方程的解齐次方程解为:齐次方程解为:非齐次方程解为:非齐次方程解为:定常非齐次方程解为:定常非齐次方程解为:例例2 2 状态方程的解状态方程的解问题的提出问题的提出分析和设计计算机控制系统时,都要把一个连续系统化为等价的离散系统。分析和设计计算机控制系统时,都要把一个连续系统化为等价的离散系统。基本假设基本假设 采样周期采样周期T T满足满足ShannonShannon采样定理采样定理采样周期为采样周期为T T采用零阶保持器采用零阶保持器线性定常系统离散化线性定常系统离散化 采用计算机控制,且采用零阶保持器,有:采用计算机控制,且采用零阶保持器,有:输出方程是一线性方程,离散化后,在输出方程是一线性方程,离散化后,在kTkT时刻仍保持线性关系时刻仍保持线性关系例:连续系统离散化例:连续系统离散化例:计算机控制系统例:计算机控制系统已知系统如图所示,求系统离散化状态空间表达式已知系统如图所示,求系统离散化状态空间表达式连续时间被控对象传函为连续时间被控对象传函为能控标准形实现能控标准形实现离散化状态方程离散化状态方程离散化离散化被控对象输入被控对象输入u(t)=r(t)-y(t)=r(t)-xu(t)=r(t)-y(t)=r(t)-x1 1(t)(t),系统的离散化状态方程为,系统的离散化状态方程为系统输出方程为:系统输出方程为:将将T=0.01sT=0.01s代入代入,得:得:本章作业本章作业

    注意事项

    本文(《状态方程的解》PPT课件.ppt)为本站会员(wuy****n92)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开