欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    《调色盘操作实例》PPT课件.ppt

    • 资源ID:80472243       资源大小:2.47MB        全文页数:36页
    • 资源格式: PPT        下载积分:11.9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要11.9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    《调色盘操作实例》PPT课件.ppt

    Digital Image Processing,2nd ed.Digital Image Processing,2nd ed.2002 R.C.Gonzalez&R.E.Woods Chapter 3Image Enhancementin the Spatial Domain(Part C)Image Processing,Department of Information Management,Leader University139下书网提供大量行业资料,电子书,电脑教程下载下书网提供大量行业资料,电子书,电脑教程下载Digital Image Processing,2nd ed.Digital Image Processing,2nd ed.2002 R.C.Gonzalez&R.E.Woods 調色盤操作實例假設有一3x3的圖形,使用的是8階的RGB色彩機制,且該圖形內容及調色盤如下:NoRGB00001234254236504711512262337247Gray03453234Digital Image Processing,2nd ed.Digital Image Processing,2nd ed.2002 R.C.Gonzalez&R.E.Woods 修正後的結果NoRGB00001111222233334444555566667777Digital Image Processing,2nd ed.Digital Image Processing,2nd ed.2002 R.C.Gonzalez&R.E.Woods Histogram EqualizationAutomatically determines a transformation function that seeks to produce an output image that has a uniform histogram.When the uniform histogram is not the best approach,we may try the Histogram Matching or Histogram Specification.Histogram Matching allows us to specify the shape of the histogram.Digital Image Processing,2nd ed.Digital Image Processing,2nd ed.2002 R.C.Gonzalez&R.E.Woods Histogram Matching(Specification)The histogram equalization automatically determines a transformation function that seeks to produce an output image that has a uniform histogram.The method used to generate a processed image that has a specified histogram is called histogram matching or histogram specification.Digital Image Processing,2nd ed.Digital Image Processing,2nd ed.2002 R.C.Gonzalez&R.E.Woods Histogram MatchingDigital Image Processing,2nd ed.Digital Image Processing,2nd ed.2002 R.C.Gonzalez&R.E.Woods Some Useful PDFs of pz(z)Digital Image Processing,2nd ed.Digital Image Processing,2nd ed.2002 R.C.Gonzalez&R.E.Woods Specified PDF Obtaining Procedures1)Obtain the transformation function T(r)using Eq.(3.3-10).2)Use Eq.(3.3.11)to obtain the transformation function G(z).3)Obtain the inverse transformation function G-1.4)Obtain the output image by applying Eq.(3.3-12)to all the pixels in the input image.uThe result of this procedure will be an image whose gray levels,z,have the specified probability density function pz(z)Digital Image Processing,2nd ed.Digital Image Processing,2nd ed.2002 R.C.Gonzalez&R.E.Woods Discrete VersionDigital Image Processing,2nd ed.Digital Image Processing,2nd ed.2002 R.C.Gonzalez&R.E.Woods Implementation Details1)Each set of gray levels rj,sj,and zj,j=0,1,2,L-1,is one-dimensional array of dimension Lx1.2)All mappings from r to s and from s to z are simple table lookups between a given pixel value and these arrays.3)Each of the elements of these arrays,for example,sk,contains two important pieces of information:The subscript k denotes the location of the element in the array,and s denotes the value at that location.4)We need to be concerned only with integer pixel values.Digital Image Processing,2nd ed.Digital Image Processing,2nd ed.2002 R.C.Gonzalez&R.E.Woods Histogram MatchingDigital Image Processing,2nd ed.Digital Image Processing,2nd ed.2002 R.C.Gonzalez&R.E.Woods Procedures for Histogram Matching1)Obtain the histogram of the given image.2)Use Eq.(3.3-13)to precompute a mapped level sk fro each level rk.3)Obtain the transformation function G from the given pz(z)using Eq.(3.3-14).4)Precompute zk for each value of sk using the iterative scheme defined in connection with Eq.(3.3-17).5)For each pixel in the original image,if the value of that pixel is rk,map this value to its corresponding level sk;then map level sk into the final level zk.Use the precomputed values from Steps(2)and(4)for these mappings.uStep(5)implements two mappings.The first mapping is nothing more than histogram equalization.Digital Image Processing,2nd ed.Digital Image Processing,2nd ed.2002 R.C.Gonzalez&R.E.Woods Original ImageDigital Image Processing,2nd ed.Digital Image Processing,2nd ed.2002 R.C.Gonzalez&R.E.Woods Fail to Histogram EqualizationSince the problem with the transformationfunction in Fig.3.21(a)was caused by a large concentration of pixels in the originalimage with levels near 0.Digital Image Processing,2nd ed.Digital Image Processing,2nd ed.2002 R.C.Gonzalez&R.E.Woods Good Result by Histogram Matching MethodManuallyspecifiedfunctionG(z)G-1(z)Digital Image Processing,2nd ed.Digital Image Processing,2nd ed.2002 R.C.Gonzalez&R.E.Woods Discussion of Histogram MatchingHistogram specification is a trial-and-error process.In general,there are no rules for specifying histograms,and one must resort to analysis on a case-by-case basis for any given enhancement task.Digital Image Processing,2nd ed.Digital Image Processing,2nd ed.2002 R.C.Gonzalez&R.E.Woods Local EnhancementThe histogram equalization and histogram matching is the global processing,that is,the pixels are modified by a transformation function based on the gray-level content of an entire image.It is also necessary to enhance details over small areas in an image.The solution is to devise transformation functions based on the gray-level distribution in the neighborhood of every pixel in the image.Digital Image Processing,2nd ed.Digital Image Processing,2nd ed.2002 R.C.Gonzalez&R.E.Woods Local Enhancement ExampleDigital Image Processing,2nd ed.Digital Image Processing,2nd ed.2002 R.C.Gonzalez&R.E.Woods Use of Histogram StatisticsThe nth moment of r about its mean is defined as:Digital Image Processing,2nd ed.Digital Image Processing,2nd ed.2002 R.C.Gonzalez&R.E.Woods Mean and VarianceMeana measure of average gray level in an image.Variance or Standard deviationa measure o average contrast.Digital Image Processing,2nd ed.Digital Image Processing,2nd ed.2002 R.C.Gonzalez&R.E.Woods The Use of Mean and VarianceThe global mean and variance are measured over an entire image and are useful primarily for gross adjustments of overall intensity and contrast.The local mean and variance are used as the basis for making changes that depend on image characteristics in a predefined region about each pixel in the image.Digital Image Processing,2nd ed.Digital Image Processing,2nd ed.2002 R.C.Gonzalez&R.E.Woods Local Mean and VarianceLet(x,y)be the coordinates of a pixel in an image,and let Sxy denote a neighborhood(subimage)of specified size,centered at(x,y).Digital Image Processing,2nd ed.Digital Image Processing,2nd ed.2002 R.C.Gonzalez&R.E.Woods Original ImageNot obvious!Digital Image Processing,2nd ed.Digital Image Processing,2nd ed.2002 R.C.Gonzalez&R.E.Woods Mean and Variance ProcessingDigital Image Processing,2nd ed.Digital Image Processing,2nd ed.2002 R.C.Gonzalez&R.E.Woods Acceptable ResultUndesired effect!Digital Image Processing,2nd ed.Digital Image Processing,2nd ed.2002 R.C.Gonzalez&R.E.Woods Arithmetic/Logic Operationsbetween Two ImagesArithmetic/logic operations involving images are performed on a pixel-by pixel basis between two or more images.Arithmetic operationsAddition,Subtraction,MultiplicationLogic operationsAND,OR,NOTDigital Image Processing,2nd ed.Digital Image Processing,2nd ed.2002 R.C.Gonzalez&R.E.Woods Enhancement Using Arithmetic/Logic OperationsDigital Image Processing,2nd ed.Digital Image Processing,2nd ed.2002 R.C.Gonzalez&R.E.Woods Image SubtractionThe key usefulness of subtraction is the enhancement of difference between images.The results have to be limited into the gray level range 0.L-1.In tracking moving vehicles in a sequence of images,subtraction is used to remove all stationary components in an image.Digital Image Processing,2nd ed.Digital Image Processing,2nd ed.2002 R.C.Gonzalez&R.E.Woods Image SubtractionDigital Image Processing,2nd ed.Digital Image Processing,2nd ed.2002 R.C.Gonzalez&R.E.Woods Image SubtractionDigital Image Processing,2nd ed.Digital Image Processing,2nd ed.2002 R.C.Gonzalez&R.E.Woods Image AveragingA noisy image g(x,y)can be defined asDigital Image Processing,2nd ed.Digital Image Processing,2nd ed.2002 R.C.Gonzalez&R.E.Woods Example for Image AveragingDigital Image Processing,2nd ed.Digital Image Processing,2nd ed.2002 R.C.Gonzalez&R.E.Woods Image AveragingDigital Image Processing,2nd ed.Digital Image Processing,2nd ed.2002 R.C.Gonzalez&R.E.Woods Basic of Spatial FilteringSome neighborhood operations work with the values of the image pixels in the neighborhood and the corresponding values of a subimage that has the same dimensions as the neighbor.The subimage is called filter,mask,kernel,template,or window.The value in a filter subimage are referred to coefficientsDigital Image Processing,2nd ed.Digital Image Processing,2nd ed.2002 R.C.Gonzalez&R.E.Woods Digital Image Processing,2nd ed.Digital Image Processing,2nd ed.2002 R.C.Gonzalez&R.E.Woods Basics of Spatial Filtering

    注意事项

    本文(《调色盘操作实例》PPT课件.ppt)为本站会员(wuy****n92)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开