新《高考试卷》2023年福建高考数学(文科)试题8.doc
-
资源ID:80520190
资源大小:411.68KB
全文页数:5页
- 资源格式: DOC
下载积分:20金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
新《高考试卷》2023年福建高考数学(文科)试题8.doc
绝密启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知集合,则ABCD2设,则A0BCD3某地区经过一年的新农村建设,农村的经济收入增加了一倍实现翻番为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例得到如下饼图:则下面结论中不正确的是A新农村建设后,种植收入减少B新农村建设后,其他收入增加了一倍以上C新农村建设后,养殖收入增加了一倍D新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4已知椭圆:的一个焦点为,则的离心率为ABCD5已知圆柱的上、下底面的中心分别为,过直线的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为ABCD6设函数若为奇函数,则曲线在点处的切线方程为ABCD7在中,为边上的中线,为的中点,则ABCD8已知函数,则A的最小正周期为,最大值为3B的最小正周期为,最大值为4C的最小正周期为,最大值为3D的最小正周期为,最大值为49某圆柱的高为2,底面周长为16,其三视图如右图圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为ABCD210在长方体中,与平面所成的角为,则该长方体的体积为ABCD11已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上有两点,且,则ABCD12设函数,则满足的x的取值范围是ABCD二、填空题(本题共4小题,每小题5分,共20分)13已知函数,若,则_14若满足约束条件,则的最大值为_15直线与圆交于两点,则_16的内角的对边分别为,已知,则的面积为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第1721题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。17(12分)已知数列满足,设(1)求;(2)判断数列是否为等比数列,并说明理由;(3)求的通项公式学,科网18(12分)如图,在平行四边形中,以为折痕将折起,使点到达点的位置,且(1)证明:平面平面;(2)为线段上一点,为线段上一点,且,求三棱锥的体积19(12分)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表日用水量频数13249265使用了节水龙头50天的日用水量频数分布表日用水量频数151310165(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表)20(12分)设抛物线,点,过点的直线与交于,两点(1)当与轴垂直时,求直线的方程;(2)证明:21(12分)已知函数(1)设是的极值点求,并求的单调区间;(2)证明:当时,(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。22选修44:坐标系与参数方程(10分)在直角坐标系中,曲线的方程为以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为(1)求的直角坐标方程;学科*网(2)若与有且仅有三个公共点,求的方程23选修45:不等式选讲(10分)已知(1)当时,求不等式的解集;(2)若时不等式成立,求的取值范围