300MW汽轮机说明书.pdf
前言 哈尔滨汽轮机厂制造的 N30016.7/537/537 型汽轮机,是以美国西屋公司的 30 万千瓦考核机组的技术为基础,通流部分等经过合理的设计改进后的一台新型汽轮机,它保留了 30 万千瓦考核机组的技术特点,又通过通流部分的优化设计,使其可靠性和经济性有较大的提高。本说明书仅适用于哈尔滨汽轮机厂优化设计并制造的 30 万千瓦汽轮机的启动、运行和维护,而对于机组在安装后的初始启动,只供参考。特别是机组在非正常工况时,必须以运行人员的实践经验和正确判断,决定是否有必要采取特殊的措施。本书中第三部分“控制方式”的编写,是以西屋公司 DEH MOD 型装置为基准,不一定与用户实际选用配置的设备相同,故只供参考。特别指出机组在最初六个月的运行期间,汽轮机应采用单阀控制方式。1、汽轮机监视仪表 30 万千瓦汽轮机装有本书所列的各类监视仪表,用来观察机组的启动、运行和停机状况。这些监视仪表的输出量,图标记录仪进行记录。1.1 汽缸膨胀测量仪 当机组从冷态进入升温和带负荷状态时,温度的变化必然导致汽缸的膨胀。汽缸膨胀测量仪用来测量汽缸从低压缸死点向前轴承箱方向的轴向膨胀量,前轴承箱沿着加润滑剂的纵向键可以自由移动。当汽缸膨胀时,如果机组的自由端在倒键上的滑动受阻,则会造成机组的严重损坏。汽缸膨胀测量仪实际上是测定前轴承箱相对死点(基础)的移动量,并记录当机组起、停和负荷、蒸汽温度变化时汽缸的膨胀量和收缩量。在这些瞬时工况下如果指示值出现异常现象,则运行人员应当对它加以分析。在负荷、蒸汽参数和真空相似的情况下,这种仪表所指示的前轴承箱的相对位置,应该基本上是相同的。汽缸膨胀没有报警和跳闸限制值。仪表指示的汽缸膨胀值应和以前在同样运行工况下的读数进行比较,若两者存在较大差异,运行人员就应该作出判断,通常可采用在低压缸撑脚,轴承箱底座与台板接触面上加润滑脂改善润滑的方法来加以处理,有时候也需要调整轴承座,使之膨胀顺畅。1.2 转子位置测量 汽轮机装有两个转子位置测量仪,以测量转子的推力盘相对于轴承座的轴向位置,由于蒸汽的作用,推力盘对位于其两侧的推力瓦块施加轴向压力,由此引起的轴瓦磨损使转子轴向移动将在转子位置测量仪上显示出来。每个测量仪都装有报警和跳闸继电器,当转子的轴向移动超越第一个预定位置时,便自动报警。如果转子的轴向移动超过第二个预定位置,则跳闸继电器动作,使汽轮机跳闸停机。每个转子位置测量仪上都备有两只转子位置传感器,并以“2 选 2”的保护逻辑以防止误跳闸。转子位置的报警值和跳闸限制值与推力轴承的间隙和它的最大推力负荷有关。本汽轮机推力轴承的设计间隙为 0.381mm,预计最大推力负荷为 4.1MPa,转子位置报警值定为转子推力盘从推力轴瓦间隙的中央位置定位,它的报警与跳闸值见“汽轮机控制设定值”。如果推力轴承的间隙小于或大于 0.381mm,则按间隙的实际值与 0.381mm差值的一半调整报警值或跳闸值。1.3 差胀测量仪 当蒸汽进入汽轮机后,动静部分将随之膨胀,由于转子的质量比汽缸小,因此转子加热较快,膨胀也较快。动、静部分的轴向间隙虽然允许汽轮机内部有差胀,但如果差胀超过允许的限制值,则会造成动静部分的磨损,甚至碰撞。差胀测量仪用来显示动、静部分的相对位移,它可以连续地指示汽轮机在运行中的轴向间隙,测量仪装有报警和跳闸继电器,当差胀使轴向间隙达到限制值时,继电器动作。在经过一个暂态过程后,动、静部分的温度逐步趋向一致,差胀值随之减小,接着允许再改变进入汽轮机的蒸汽流量和温度。设定的差胀报警值和跳闸值参见本说明书第一部分中的“汽轮机控制设定值”。1.4 转子偏心度测量 在机组停机过程中,如果上缸的温度比下缸高,则由于不均匀冷却,会导致转子弯曲,用盘车装置低速旋转转子,使转子温度趋于均匀,从而减小转子的弯曲程度。转子的这种弯曲,从盘车转速到大约 600r/min 时和在高转速时,分别以偏心度和振动值连续的被记录下来。转子偏心度测量仪装有报警信号器,当偏心度达到限制值时进行报警。这种测量仪的另一个输出信号是瞬时偏心度,该信号由盘车装置上的一个偏心表指示出来,当机组正在盘车,这个表指示转子和传感器之间间隙的周期性变化。如果必须使机组停止盘车,则应该使转子弓背位于转子的下部,以减小转子上、下部分的温度梯度。当偏心度测量仪的瞬时值为最小时,是转子的最佳位置。注 意 偏心度传感器位于汽轮机的前轴承箱垂直中心线的顶部,其读数之最小值便是转子的传感器的最小间隙。在这一位置,转子的上半部(较冷部分)处在较高的温度介质中,因此,可以减小转子的弯曲。1.5 振动测量仪 振动测量仪用来测量和记录当转速高于 600r/min 时转子的振动。本汽轮发电机组的每个轴承座上装有一个震动传感器,该监视仪表将直接测量转子的振动值。过大的振动值预示汽轮机可能发生事故或表示汽轮机运行不正常。每个振动测量仪装有报警和跳闸继电器,当任何一个轴承上测得过大的振动值时,继电器发出相应的动作,下面是给出的振动限制值(峰峰值),测量单位为 0.01mm。满意值 报警值 跳闸值 7.6 12.5 25.4 1.6 相角仪 相角仪显示某一特定轴承的凸起处和转子上一个参考点之间的角度关系,相角仪的正面装有一个选择开关,以供选择任何一个传感器测得的相角读数。1.7 零转速指示器 零转速指示器装有几只继电器,当机组达到零转速时,这些继电器动作。在前轴承箱内装有两个单独的保护通道,为了防止误动作,每个通道的输出继电器与 2 选 2 逻辑线路连接。继电器的输出信号用来向盘车发出投入信息,并用于报警。1.8 转速指示仪 转速指示仪使用一只零转速继电器作为输入装置,一个转速的模拟输入信号与记录仪相连,连续记录汽轮机的转速,另两个继电器作为附加输出,它们分别对应两个各不相关的预定转速。当转速超越某一预定值时,相应的继电器动作,以控制盘车装置,排汽缸喷水装置和顶轴装置。2、蒸汽和金属热电偶 下表中热电偶的安装位置表示在“高中压缸热电偶位置”图中 项号 热电偶号 热电偶位置 测温对象 说明 17 18 TC3010 TC3202 蒸汽室内壁(左)蒸汽室内壁(右)金属 与“启动时主蒸汽参数”图标相对照,从主汽阀向调节阀控制切换之前,均匀加热蒸汽室 19 20 TC3030 TC3040 蒸汽室外壁(左)蒸汽室外壁(右)金属 用以保证蒸汽室内、外壁温差不超过 83 21 TC3050 第一级金属(调节级后)金属 与第 25 项中压隔板套金属温度相比较后确定:(a)采取冷态启动还是热态启动(b)如果冷态启动,则确定转子加热时间(见图表冷态启动 转 子 加 热 规程)(c)如果热态启动,则确定达到额定转速的升速时间(见图表热态启动推荐值)23 24 TC3070 TC3080 第一级蒸汽(1 号)第一级蒸汽(2 号)(调节级后)蒸汽 与第 21 项对照,将实测温度和本说明中所预定的温度相比较 25 TC3091 中压隔板套 金属 与每 21 项的温度比较后确定(a)采取冷态还是热态启动(b)如果冷态启动,则确定转子加热时间 27 28 TC3210 TC3220 高中压缸端壁(调端)高中压缸端壁(电端)金属 与第 29 项比较,经监测汽封区转子金属与汽封蒸汽间的温差(见图表汽封蒸汽温度推荐值)29 TC3230 高压汽封蒸汽(高中压汽封公用集汽管)蒸汽 指示汽封蒸汽温度,并与第 27 28 项两项温度进行比较 30 31 TC3240 TC3250 中压主汽阀进口 (左)中压主汽阀进口 (右)蒸汽 当温度达到最低值 260时,开始计算转子加热时间(见冷态启动转子加热规程)各中压主汽阀进口最大温差为14 32 33 34 TC3260 TC3270 TC3320 高压缸下部排汽区 (调端)高压缸上部排汽区 (调端)中压缸下部排汽区 (电端)金属 进水检测热电偶,在所述温度区成对使用,当下缸温度比上缸温度低 42时即报警 当下缸温度比上缸温度低 56时,即停机.可参35 37 38 TC3330 TC3440 TC3450 中压缸上部排汽区 (电端)中压缸下部排汽区 中压缸上部排汽区 见“汽轮机进水”一节 36 TC3331 中压缸下部排汽区 蒸汽 用于 ATC 程序进行中压转子应力计算 39 40 TC3760 TC3770 高压主汽阀进口 1#(左)高压主汽阀进口 2#(右)测定每一个高压主汽阀进口处的蒸汽温度,各主汽阀进口处的最大温差为了14 15 16 TC3110 TC3120 低压缸排汽口 (调端)低压缸排汽口 (电端)蒸汽 用以报警和记录低度压缸 排 汽 温 度,79 报警,121为极限值,允许持续时间为 15min,如果超过期作废 121必须紧急停机.17 TC3500 低压汽封蒸汽 蒸汽 用以监视低压汽封蒸汽温度,如果温度超过计划177或低于 121,即予报警 3、汽轮机控制设定值 3.1 润滑油压 名 称 说明 标 注 设 计 参 数 备 注 MPa Kg/cm 主 油 泵 在额定转速下的出口油压 A 1.67-1.76 17-18 交直流危急油泵投入时的吸口油压 A 0.0686-0.373 0.70-1.40 在额定转速下的进口油压 A 0.06860.3099 0.70-3.16 辅 助 油 泵 高压密封油备用油泵出口 A 0.83-0.90 8.44-9.14 交流润滑油泵工作油压 A 0.09611-0.1236 0.98-1.26 直流危急油泵工作油压 A 0.09611-0.1236 0.98-1.26 交流顶轴油泵工作油压 A 8.27-10.34 84.36-105.4 压力润滑油工作油压 A 0.09611-0.1236 0.98-1.26 整定值(在机组额定转速下)机械超速和手动跳闸杆 1#安全阀 0.69-0.76 7.03-7.73 机械超速和手动跳闸杆 2#安全阀 0.86-0.93 8.18-9.94 超速保护跳闸设定值 3300rpm 标注 A-在调整油压之前,油温必须大于或等于心不甘 32,所有压力值均在汽轮机中 心线处读得。32 高压抗燃油 说明 设计参数 备注 MPa Kg/cm 高压抗燃油母管最小压力(带负荷)1214 1265 卸载阀正常卸载油压 1448 1476 安全阀动作油压 1620 1652 蓄 能 器 充 氮 压 力 高压蓄能器充氮压力 896 914 再回减到 828 844 低压蓄能器充氮压力 021 211 再回压力 016 168 油箱中的工作油温()3760 压力传感器 标记 名称 刻度范围 输出 备注(mA)XD TP 主蒸汽压力 0-19.61MPa 0-200Kg/cm2 4-20 XD IP 第一级压力 0-14.71MPa 0-150Kg/cm2 4-20 XD 中压缸排气压力 0-1.47MPa 0-15Kg/cm2 4-20 OPC XD CP 冷凝器压力 0-1.10MPa 0-76cmHg 4-20 XD HPE 高压缸排气压力 0-4.90MPa 0-50Kg/cm2 4-20 XD GS 汽封蒸汽压力 0-0.12MPa 0-1.2Kg/cm2 4-20 3.3主汽阀 油动机行程 升程 控制器输出电压 关阀 635mm 5V 预启阀全开 3175mm 8V 主汽阀全开 23563mm 10V 34 监视仪表 差胀发电机端(LP*)记录仪刻度 050mm 整定值 ATC 流程图(911)选择 输入电压(记录仪表或 DEH)记录仪读数(mm)转子伸长(正差)跳闸 跳闸极限值1 179 894 报警 报警极限值1 194 970 冷态 508 254 转子缩短(负差)报警 跳闸极限值2 523 2616 跳闸 报警极限值2 538 2692 转子位置(推力轴承跳闸)记录仪刻度表 025mm 整定值 发讯头间隙(mm)ATC 流程图(911)选择 输入电压(记录仪及DEH)记录仪读数 RP1A 及RB1B RP2A 及RP2B 通道1(调速器向)跳闸 254 跳闸极限 6 10 025(调速器向)报警 266 报警极限 6 15 0381 零位整定 356 50 127(发电机向)报警 439 报警极限 5 85 216(发电机向)跳闸 457 跳闸极限 5 9 228 通道2(调速器向)跳闸 254 (调速器向)报警 零位整定 266 356 (发电机向)报警 436 (发电机向)跳闸 457 *推力盘以推力轴承的工作面和非工作面间的中心线定位 偏心 报警值 00762mm 0508mm 危险值 振动 报警值 0125mm 0508mm 危险值 0254mm 汽缸膨胀 转速 继电器 设定值 141/SD 不励磁 84000RPM 142/SD 励磁=600rpm 35 薄膜接口阀 在高压抗燃油供油压力为13.79MPa(140.6Kg/cm2)(表压),自动停机润滑油压降到 0.35MPa(3.52Kg/cm2)(表压)时,薄膜接口阀打开。在高压抗燃油压力为 0 帕表压,自动停机润滑油压升到 0.12MPa(119Kg/cm2)(表压),薄膜接口阀关闭。312DEH 控制器设定值 主蒸汽压力控制器设定值为主蒸汽压力额定值的 90;中压缸排汽压力(KW 比较设定值)80;电超速跳闸设定值(ETS)设定到机械超速跳闸转速或偏小12r/min;超速保护转速设定值(OPC)额定转速的 103。调节级叶片运行推荐值 1 概述 1.1 哈尔滨汽轮机厂生产的 30 万千瓦汽轮机,设计成具有顺序阀(部分进汽)运行的能力。这种控制方式使机组具有最佳的热经济性。在整个负荷控制范围内,可以达到最低热耗值。但是,这种控制方式也会使调节级(第一级)叶片处于最恶劣的工作条件下运行。因为在部分负荷下,与单阀(全周进汽)运行相比较,调节级承受较大的机械载荷和压降。1.2 调节级叶片使叉形叶根用销钉与转子连接。在冷加工和装配时,叶片与转子间接触面上的机械载荷不是均匀的。这会在接触面上引起很高的局部应力。当部分进汽方式运行时,特别当初始启动时发生不正常的压力和温度变化的情况下,这些局部应力将会更大。但是,转子和叶片之间连接部分的载荷,在长时间的温度和周围介质的作用下,将趋向均匀。也就是说,经过一段时间运行以后,载荷的分布更加均匀,从而提高了调节级叶片的安全可靠性。1.3 在部分负荷下,调节级叶片在全周进汽的运行方式下比部分进汽的运行方式承受较少的载荷。此外在部分负荷时叶片处于较高的温度下工作,这对于叶片和转子的连接部分达到均匀的机械载荷分布也是有利的。2 运行建议 2.1 为了提高调节级叶片的汽轮机,装有下面所列转子和调节级叶片的汽轮机,至少要经过六个月的全周进汽的初始运行。2.1.1 所有新转子,包括原配转子,备用转子和替换转子。2.1.2 所有新装调节级叶片的内转子。2.2 如果机组已经经过两个月以上的全周进汽方式运行,并且主蒸汽温度和压力是稳定的,则在其余的初始运行时间里可以部分进汽方式运行,但是要有下列限制:2.2.1 在至少两个阀门全开的高负荷下,汽轮机可以在允许变化范围内的任意主蒸汽压力下运行。2.2.2 在少于两个阀门全开的部分负荷下,应该用滑压方式来改变负荷。另外,汽轮机可以以全周进汽方式在规定的允许变化范围内任意主蒸汽压力下运行。2.3 六个月后,汽轮机可以不受 2.2.2 条的限制。3 汽轮机阀门控制方式的变换。3.1 汽轮机配备有单独的调节执行机构。因此,可以以全周进汽变换为部分进汽方式。反之亦然。3.1.1 在具有阀门管理能力的 30 万千瓦机组上,按下控制盘上适当的按钮,便可完成进汽方式的切换,且这一改变可以在机组带负荷时进行。蒸汽参数的允许变化范围 一般所说的汽轮机功率,性能,蒸汽流量,转速和压力控制,都是指在额定蒸汽参数下运行而言的。但是,汽轮发电机组可以在本节所述的蒸汽压力和温度的波动范围内运行。这些允许的参数波动是为了运行中进行事故处理。然而这种非正常的运行,特别是压力和温度同时波动,应当尽可能减少。1.进汽压力 在任何 12 个月的运行期内,主汽阀的进汽压力应控制并保持其平均压力不超过额定压力的 105。在保持这个平均压力的同时,在不长于控制所要求 的时间内,平均压力还不超过额定压力的 106。在非常工况下,进汽压力瞬时波动的峰值,不允许超过额定压力的30。并且在 12 个月的运行运行期内,这些超过 105额定压力的瞬时压力波动时间的总和不得大于 12 个小时。2.再热压力 高压缸的排气压力,不允许超过当高压缸的进汽在正常参数下达到最大流量,而压力又为 105额定压力时的排气最高压力的 25。3.进汽温度 在任何 12 个月的运行期内,主蒸汽温度的平均值不允许超过主蒸汽的额定温度。在保持这个平均温度的同时,主蒸汽的温度不允许超过额定温度 8。在 12 个月的运行期内,在非正常运行工况下,主汽阀的进口温度不允许超过额定温度 14,累计时间不超过 400 小时。此外,在12 个月的运行期内,主蒸汽温度在每 15 分钟之内的波动,不允许超过额定温度 28,或累计时间超过 80 小时。在保持上述允许温度下,通过任何一个主气阀的蒸汽与同时通过其它主气阀蒸汽的温度不允许超过 14。在非正常运行工况下,这个温度允许高至 42,但最长时间为 15 分钟,且这种情况至少要相隔 4 个小时。4.再热温度 在任何 12 个月的运行期间内,中压缸进汽温度的平均值不允许超过再热蒸汽的额定温度,在保持这个平均温度下,再热温度不允许超过其额定温度 8。在 12 个月的运行期间,在非正常运行工况下,再热汽温度不允许超过其额定温度 14,累计时间不超过 400 小时。此外,在 12 个月的运行期间内。再热汽温度在每 15 分钟之内的波动,不允许超过额定温度 28,或累计时间超过 80 小时。在保持上述平均再热汽温下,通过任何一个再热进汽区域的汽温与同时通过其它进口区域的温差不允许超过 14。在非正常运行工况下,这个温差允许高至 42,但最长时间为 15 分钟,且这种情况至少要相隔 4 个小时。5.高中压合缸进汽参数的限制 与主蒸汽进口和再热蒸汽进口位于同一个汽缸的情况下,在额定工况下,主蒸汽和再热蒸汽的温差不得超过 28,在非正常工况下,此温度可以允许高至 42,但仅限于再热汽温度低于主蒸汽温度一般来说,这此限制是在接近满负荷时使用,当负荷减少时,再热温度将低于主蒸汽温度,在这种情况下,当接近于空负荷时,温差可达83,短暂的温度周期性波动应予避免。汽轮机蒸汽纯度 蒸汽中存在有害的带腐蚀性的杂质,会使汽轮机零部件因化学腐蚀,应力腐蚀和腐蚀疲劳 而损坏。杂质的沉积还会因为降低叶片效率,扰乱压力分布和堵塞阀门中的汽封和间隙而引起事故。为了避免重大事故,为了避免重大损坏,长时间的停机以及昂贵的维修,则必须严格控制汽轮机的蒸汽纯度。此外,为了保证在管道和设备的化学清洗过程中杂质不进入汽轮机,必须采取有效的措施。为使蒸汽纯度能够获得最佳控制,建议连续地对高压缸进汽中地钠,氯化物,阳离子导电率及氧进行分析,如果采用分析锅炉用水的方法来控制蒸汽的纯度,则必须了解并考虑机械的和气态的携带物及疏水,减温水的化学成分等对化学浓度的影响。如果在高压缸进汽口之后向蒸汽注入化学药物或补充水,则为保持蒸汽的纯度,在注入点前应对蒸汽进行补充分析。注入水应使用与凝结水同质量的水。从汽轮机运行的观点来看,氨水,环已基聚合物以及状态线可用于 PH 值的调整。表 1 给出了在汽轮机蒸汽中杂质的推荐限制值。表中相应于正常运行的值,是为汽轮机可靠运行的值,是为汽轮机可靠运行给出的推荐值。这些值代表了在汽轮机的干蒸汽区内,蒸汽中的杂质浓度低于其要求的溶解度极限值时限制值。表中相应于极限状态的值是不希望出现的,必须在指定的时间内将它调整到正常状态,电厂应尽可能使蒸汽保持较好的纯度。任何上限的运行应该避免,并及时采取正确的措施。注解:a 每周至少对典型值进行一次分析。注 正常运行 极限状态 两周 24 小时 控制参数 阳离子导电率,微姆cm b,c 0.3 0.30.5 0.51.0 溶解氧,PPb b,c 10 1030 30100 钠 PPb b,c 5 510 1020 氯化物 PPb b,c 5 510 1020 二氧化硅 PPb b 10 1020 2050 铜 PPb a 2 铁 PPb a 20 NaPO4克分子比 a,c 2.32.7 亚铁酸盐和硫酸盐 d b 用于通过连续地直接分析主蒸汽的冷凝水的化学控制,或根据锅炉水和机械及汽态携带物质进行复算。c 建议连续地进行分析 d 对于含量极微不可查之成分,至少每周分析一次。e 使用于磷酸盐水处理的机组。运行限制及注意事项 1、一般注意事项 1.1 在蒸汽进入气轮机之前,应根据转子金属的初始温度来决定采用冷态启动或热态启动。机组启动程序“起动和变负荷推荐值”一节中作详细说明。1.2 当机组按冷态启动程序启动时,转子的加热时间可由“冷态启动转子暖机规程”曲线确定。但必须指出,由转子的初始金属温度确定的这段时间不得缩短,即使是在危急情况下,运行人员急于想使机组很快并网,也是如此。对于在暖机时间允许的转子加热转速范围。参见图表“汽轮机转子保持推荐值”。1.3 当机组按冷态启动程序启动时,要控制主汽阀进口的蒸汽参数,使第一级蒸汽温度不允许比第一级金属温度高 110C,或低于56C,参见“热态启动推荐值”曲线。1.4 低压缸叶片的共振转速范围示于图表,“汽轮机转速保持推荐值”中,当汽轮机在升速阶段,如果有必要保持转速则必须注意转速不可在共振转速范围内停留。如果转速落入了共振区,则应将转速降到共振区之下。1.5 为使蒸汽室在由主汽阀切换到调节阀控制之前得到充分加热,蒸汽室的内壁温度(由内部热电偶测得)应等于或高于主汽阀前蒸汽压力对应的饱和温度。这样可以防止因控制方式转换至调节阀控制而使蒸汽室腔内压力升高,而形成水滴。这个加热过程在主蒸汽压力高时比较难以实现,这是因为当蒸汽通过主汽阀的予启阀时由于节流而产生较大的温度损失,“启动时主蒸汽参数”曲线表示了压力和温度的关系,为使蒸汽室温度达到预期值,则主汽阀前的进汽参数必须按该曲线进行控制,例如,当主蒸汽压力为 6.9MPA(70KG/cm2)时,主蒸汽温度至少需要 375C,由此可见,在启动时而希望采用压力较低的蒸汽。1.6 蒸汽室内壁热电偶和外壁热电偶温度最大不得超过 83C。1.7 在汽轮机运行期间,应经常观察蒸汽和金属温度热电偶的限值,参见“蒸汽和金属热电偶”一节。1.8 调节阀的开启顺序必须严格按“汽轮机控制设定值”一节中的规定,如果按其他顺序开启,会因起调节级叶片事故。1.9 汽轮机运行不允许其一侧蒸汽室上的主蒸汽阀开启,而另一侧或蒸汽室上的主汽阀关闭,这条限制对于很短时间例外,例如为进行阀杆卡塞检查时。1.10 汽轮机运行不允许其一侧再热主汽阀开启,而另一侧的关闭。这条限制对于很短时间例外,例如为进行阀杆卡塞检查时。1.11 如果采用再热喷水减温,则必须注意下列运行工况。按照最大工况的热平衡(包括 5超压),必须测量再热减温喷水量,此测得水量以最大计算工况热平衡。(包括 5)超压),必须测量再热减温水量,此测得的水量以最大计算工况热平衡所得的主蒸汽流量之百分数来表示,而负荷必须以 1喷水量从这个热平衡所示负荷下降 0.6。1.12 避免再低于 5额定负荷下运行。必须时也可以允许再甩主负荷后带厂用电运行,但是要注意下列条件:1.121 要保持“空负荷和低负荷运行指导“图标中规定的再热温度和低压缸排汽压力的限制值。1.122 低压缸的排汽温度不得超过“低压缸排汽和排汽缸喷水“一节中规定的各种限制值和参考值。1.12 所有监视仪表的读数,都应在允许(报警)极限范围内,要特别注意胀差的读数。在各读数迅速变化或连续变化的情况下,要及时来采取措施,以避免超过允许值,这些措施包括停机或减负荷以达到安全运行工况。1.13 当汽轮机在运行过程中,如果 DEH 控制柜的柜门开着,则不得在其附近或同一个机房内使用除电话外的手提无线电装置。例如,当控制柜门开着时,一个 5 瓦的话筒会引起调节阀开度1015变化。1.14 汽轮机可以连续运行在5超压的最大运行工况(非保证工况)给出的各种工况下运行,采用下列措施汽轮机可以非正常工况下运行 1.141 切除给水加热器 1.142 再热喷水量大于热平衡的给量 1.143 以汽动给水泵切换到电动给水泵 1.144 减少热平衡给的热空气的抽汽量 上述非正常工况只要循环发生变化,便引起通流部分的蒸汽流量超过设计流量。因此,如果不足够的减少负荷来防止出现超越设计工况,将最终导致汽轮机的损坏,特别是叶片的损坏。在超越最大允许设计负荷有时用“最大允许极限负荷”来表示时,低压缸最后三级叶片尤容易损坏。在其他运行资料中,规定了各种运行规则,以指导运行人员在某些非正常工况时为了避免事故而采取降低负荷的方法。1.15 对于非额定蒸汽参数下机组的运行,可参阅“蒸汽参数的允许变化范围”一节。1.16 下列情况要时使汽轮机甩负荷和跳闸 如果主蒸汽压力控制器未投入运行来自汽包锅炉的主蒸汽压力降到额定压力的 90(对于直流锅炉取 95);或者在蒸汽温度或再热汽温度降低 66 度以上时,如果主蒸汽压力控制器统入运行,可参考“停机规程”一节。1.17 汽轮发电机17 汽轮发电机组不允许出现倒拖状态运转过,这种现象应限于一分钟以内,以防止汽轮机叶片因鼓风而过热,并且在任何时候也不允许故意使机组处于倒拖状态下运行。1.18 超速跳闸机构18 超速跳闸机构 1.181 机组每次大修或前轴承箱维修,可能影响机组跳闸的设定值,因此,当重新启动时应对机组进行超速试验,以保证超速跳闸机构的正常动作,除特殊情况需提前检查外,超速试验应定期每半年进行一次试验。1.182 超速机构的试验程序详见“冷态启动规程”一节。1.183 超速跳闸的设定值规定在“汽轮机控制设定值”一节中 1.184 超速跳闸机构见“机械超速跳闸说明”1.19 在机组停机期间,除在“停机时盘车装置的运行一节中的说明外,要使盘车装置保持运行。1.20 当汽轮机静子处于静止状态时,不得进入蒸汽。1.21 当现场进行以锅炉出口到汽轮机的主蒸汽管道水压试验时,可考虑用两种方式,一是在主蒸汽阀前设置堵板,二是在主汽阀前设置闸阀,采用那种方式由设计院和用户商定。2.汽轮机的扁周波运行 为了防止叶片共振,汽轮机应避免扁圆周运行。长时间的在某各偏离设计值的周波下运行,将会引起叶片过大的动应力。使叶片产生疲劳裂纹,偏离周波运行的允许数值和时间规定在“非额定周波下的汽轮机运行”曲线上。3.轴封系统 3.1 轴封供汽必须具有不小于 14 摄氏度的过热度。3.2 盘车之前不得投用轴封供汽系统,以免转子弯曲。3.3 低压缸轴封供汽温度不得低于 121 摄氏度。不得高于 177C,建议轴封系统温度调节器设定在 149 摄氏度。3.4 为了防止转子的轴封部位由于热应力而造成损坏,当机组在启动和停机时,要尽量减小轴封和转子表面间的温差,在各种温度下使转子由于热应力而开始产生裂纹的估算的循环次数,可以从“汽封蒸汽温度推荐值”曲线中查的。建议转子循环疲劳能力为 10000次。3.5 在热态启动时,若用辅助锅炉向轴封供汽,则应保证蒸汽予转子的最大温差在允许范围内。4.低压缸排气和排气缸喷水 4.1 在轴封供汽之前,不得开启真空泵和轴封供汽风机 4.2 排气缸喷水置于自动控制下,当转子的转速达到 600 转/分开始喷水,直到机组带上 15的负荷为止,在机组启动期间。控制开关必须放在“自动”位置。该开关还应设有一个“手动位置。4.3 运行人员必须确信,当汽轮机转速高于 3 转/分钟,排气缸喷水控制阀要通水。4.4 当排气缸喷水切除时,如果机组继续运行,则低压排气缸温度极限值为 79 摄氏度(报警值),或 15 分钟内的短时间运行不得超过 121 摄氏度。如果达到 121 摄氏度,则应立即紧急停机加以处理。注 意 当排气缸喷水投入时,虽然不会有过高的排气温度,但是低压通流部分仍可能有高的温度,为避免叶片温度过高,有必要注意背压的限制值。4.5 低压排气缸在空负荷流量,冷凝器低背压以及排气缸喷水切除的情况下,不希望出现过热现象。当冷凝器在高背压时,将使得低压缸产生过热,当机组在额定转速低于空负荷流量时,如果机组允许处于倒拖运行状态,也将会产生过热 4.6 如果低压排气缸的蒸汽温度达到 79 摄氏度,则运行人员必须以增加负荷或改善真空来降低该温度。4.7 当排气缸温度喷水投入时,高背压运行会引起通流部分的高气温,因此运行人员必须注意在这种情况下的运行不要发生低压缸动静之间出现不允许的胀差或径向膨胀。4.8 在排气温度较高下运行,要特别注意当时的差胀,振动和轴承金属温度变化等。在喷水装置切除时,可由排气缸上的温度计或热电偶测定温度,如果排气温度已达到报警值 79 摄氏度,则运行人员必须采取下列任何一个措施来降低这个温度。4.81 改善真空 4.82 如果机组在低负荷下运行,则应使负荷增加到 15的额定负荷 4.83 如果机组还未并网,则将机组降至暖机转速 4.84 如果机组处于暖机转速,则应回到盘车转速 4.85 投入喷水装置 4.9 排气缸喷水调节阀由一个旁通阀,此阀只在调节阀故障和维修时使用,旁通阀只开大到保持计算的喷水压力,见“汽轮机控制设定值”一节。特 别 注 意 为了避免汽轮机在启动时发生故障,当不需要投入排汽缸喷水装置时,这个旁通阀不得打开。4.10 图表“空负荷和低负荷运行指导”给出了空负荷(额定转速)和 5负荷下排气压力和再热汽温度间的关系。如空负荷(额定转速)下再热温度为 482 摄氏度,图表规定排汽压力极限值为 0.05KG/cm2 4.11 真空跳闸设定值间“汽轮机控制设定值”一节。4.12 真空破坏 4.12.1 低压缸要同时破坏真空 4.12.2 机组只要在跳闸或正常停机时无意外情况发生,真空应一直保持到惰走至额定转速的 10或到盘车投入为止。如果遇到危机情况,则要求主汽阀关闭后立即破坏真空,在跳闸停机后,一般不希望立即破坏真空,这是因为排气部分介质的密度突然增加会产生一个制动作用而引起叶片事故。如果由必要缩短惰走时间去减小机组可能发生的事故,则在机组跳闸以后应该立即破坏真空。跳闸后要求立即破坏真空的例子有:交流电源断电,直流电源断电,润滑油断油,推理轴承引起的跳闸,汽缸进水,动静部分的摩擦以及机惰走时振动大。4.12.3 下列情况在任何转速下不得破坏真空 a、汽轮机跳闸停机前 b、主汽阀关闭前 c、发电机解列前 d、汽轮发电机组在正常惰走前 4.12.4 如果机组已并网,以及主汽阀虽然关闭但其转速仍保持匀速额定转速,则不得破坏真空。这种情况出现在机组处于倒拖状态下运行。4.12.5 如果机组虽然甩去负荷,但仍由调速系统保持额定转速而带厂用电,则不得破坏真空。在这种情况下,主汽阀并没有关闭,或虽然发电机已从电网解列,但机组并没有在正常惰走。4.12.6 如果轴封供汽切断,一旦出现上述 4.12.2 的情况,则要立即停机并破坏真空。4.12.7 在轴封供汽停止以前,为了不使冷空气通过温度较高的轴封和转子进入汽轮机内部,真空应尽快降低。4.13 机组的负荷在 10100额定负荷范围内,允许最高背压为0.19kg。在更低负荷和额定转速空负荷的情况下,实际上只需要降低的背压。在这种情况下的运行应按照图表“空负荷和低负荷运行指导”中的规定。忽视规定的背压极限值,可能会造成叶片损坏或汽轮机动静间摩擦,而导致汽轮机部件的严重损坏。5、汽缸进水 5.1 冷水进入热汽缸中,会引起动静部分磨损,机组振动和热经济性下降,如果情况严重,则必须停机检修损坏的零件。运行人员必须保证汽轮机的酥疏水孔,主蒸汽管道,再热蒸汽管道以及抽汽管道的疏水孔在机组启动时是畅通的。此外,运行人员还应保证电厂系统,包括给水加热器,锅炉蒸发器系统,以及再热减温减压系统正常运行。5.2 进水检测热电偶成对的安装在汽缸上(上、下半缸各一只),以监视所选择部位的汽缸上、下部的金属温差。汽缸上部与下部的允许最大温差为 56,下缸温度较低,当温差达到 42时报警,超过 56应立即停机。温差的突然增大,说明外缸底部积水。这时要立即检查并打开所有疏水阀。检查所有可能引起汽轮机进水的各个系统,包括给水加热器,锅炉蒸发器系统,再热汽减温减压以及主整齐管道及抽汽管道上的疏水管道。注 意 如果没有要求汽轮机停机的信号只是或其他事故停机信号。则汽轮机可在上述 56温差下维持运行。这样做是为了让运行人员有一定时间排除已进入汽轮机内的积水,并且利用通过汽轮机的蒸汽的热量,矫正已发生变形的静止部件。但必须立即停机。5.3 运行人员必须熟悉“汽轮机进水”一节中的内容。否则无法处理紧急情况。6 疏水阀 6.1 汽轮机所有疏水阀在正常情况下均为自动动作的。但是,如果有必须进行手动时,则这些疏水阀以及影响汽轮机安全运行的其他疏水阀必须;6.1.1 在机组停机但尚未冷却之前,必须呈开启状态。6.1.2 在机组启动及汽封供汽之前呈开启状态。6.1.3 为了排放再热主汽阀前的疏水,为机组负荷有增加到 10额定负荷之前,必须保持开启状态。6.1.4 为了排放再热调节阀后的疏水,在机组负荷增加到 20额定负荷之前,必须保持开启状态。6.1.5 与机组负荷降至 10额定负荷时,打开再热主汽阀前的疏水阀,并在该负荷一下一直保持开启状态。6.1.6 当机组负荷降至 20额定负荷时,打开再热主汽阀后疏水阀,并且在该负荷以下一直保持开启状态 6.2 在主要疏水阀开启之前,要避免破坏真空。此项规定并不适用于需要立即破坏真空的紧急情况,也不适用于用户的主蒸汽管道疏水阀。6.3 在初始启动过程中,机组在盘车,转速和负荷保持期间(一般在1020负荷以下),要注意查看并记录每根疏水管道上的压力表读数。如果任何管道的压力超过了连接该管道的最低压力源的压力,就应使机组停机,并排除故障。7 监视仪表 7.1 机组从盘车转速开始到冲转之前,用手提式千分表在轴承挡油环测定转子的晃动量不得大于 0.025mm(峰峰值)。此外,转子偏心度不得超过 0.076mm(峰峰值)7.2 转子得轴向位置以正常推力轴承间隙.0.381 为准,从推力定位间隙中心(每个方向)算起,0.889mm 报警,1.02mm 跳闸。要注意转子位置随时间得变化。上述限制值用于相应得初始设定值,对于特殊得报警和跳闸值可查阅“汽轮机控制设定值”一节。7.3 振动限制值(峰峰值)7.3.1 0.076mm 为满意值 7.3.2 0.125mm 为报警值(如果振动式连续得和属于不平衡型得,应查原因)。7.3.3 0.254mm 跳闸或采取其他合适措施(根据具体情况可以变化转速或负荷等)。7.4 差胀限制值,见“汽轮机控制设定值”7.5 汽缸膨胀记录器不设有“报警”或“跳闸”功能 8.汽轮机轴承和油系统 8.1 轴承金属得温度限制值 8.1.1 根据进油温度,油量,轴承尺寸机及轴承载荷等不同汽轮机轴承巴氏合金温度一般在 66 摄氏度107 摄氏度之间。巴氏合金温度得报警值为 107 摄氏度。高于此温度得运行应小心地监视,直到找到原因为止。当金属温度超过 113时,汽轮机应跳闸。注 意 当轴承温度变化不定时,应立即查明原因。必要是要停机进行原因分析,检查轴承并进行必要的检修,根据缺陷的大小使之符合“停机时盘车装置的运行”一节中的有关规定。8.1.2 推力轴承巴氏合金的温度范围是从略高于进油温度到 99,主要决定于推力的大小。报警值为 99,跳闸值为 107。报警和跳闸之间的运行应小心的监视,直到查处原因为止。8.2 轴承低油压的报警值和跳闸值见“汽轮机控制设定值”一节。8.3 油温限制值 8.3.1 如油箱的油温低于 10,不得启动电动润滑油泵。8.3.2 在油箱的油温未达到 21以前,不得投入盘车装置,21是汽轮机运行的最低油温。8.3.3 轴承出口油温应不超过 82。报警值为 77,跳闸值为 82。8.3.4 汽轮机在运行时的正常油温为 38至 49,当汽轮机启动时,切断冷油器的水源,使油温升至上述范围内。8.3.5 在汽轮机运行时