欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    Logistic回归分析方法.ppt

    • 资源ID:80586553       资源大小:128KB        全文页数:29页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    Logistic回归分析方法.ppt

    Logistic回归分析回归分析公共卫生学院公共卫生学院一、前言一、前言应变量为分类指标的资料应变量为分类指标的资料线性回归分析:线性回归分析:应变量为连续计量资料应变量为连续计量资料二、二、Logistic回归模型回归模型Logistic回归的分类回归的分类 二分类二分类 多分类多分类 条件条件Logistic回归回归 非条件非条件Logistic回归回归Logit变换变换 也称对数单位转换也称对数单位转换 logit P=流行病学概念:流行病学概念:设设P表示暴露因素表示暴露因素X时个体发病的概率,时个体发病的概率,则发病的概率则发病的概率P与未发病的概率与未发病的概率1-P 之之比为优势比为优势(odds),logit P就是就是odds的对数值。的对数值。Logistic回归模型回归模型 Logistic回归的回归的logit模型模型Logistic回归模型回归模型三、参数估计三、参数估计最大似然估计法最大似然估计法(Maximum likehood estimate)似然函数:似然函数:L=Pi 对数似然函数:数似然函数:lnL=(ln P)=ln P1+ln P2+ln Pn 非非线性迭代方法性迭代方法Newton-Raphson法法四、参数检验四、参数检验似然比检验似然比检验(likehood ratio test)通过比较包含与不包含某一个或通过比较包含与不包含某一个或几个待检验观察因素的两个模型的对几个待检验观察因素的两个模型的对数似然函数变化来进行,其统计量为数似然函数变化来进行,其统计量为G(又称又称Deviance)。)。G=-2(ln Lp-ln Lk)样本量较大时,样本量较大时,G近似服从自由近似服从自由度为待检验因素个数的度为待检验因素个数的 分布。分布。比分检验比分检验(score test)以未包含某个或几个变量的模型为基础,以未包含某个或几个变量的模型为基础,保留模型中参数的估计值,并假设新增加保留模型中参数的估计值,并假设新增加的参数为零,计算似然函数的一价偏导数的参数为零,计算似然函数的一价偏导数(又称有效比分)及信息距阵,两者相乘(又称有效比分)及信息距阵,两者相乘便得比分检验的统计量便得比分检验的统计量S。样本量较大时,样本量较大时,S近似服从自由度为待检验因素个数的近似服从自由度为待检验因素个数的 分布。分布。Wald检验检验(wald test)即广义的即广义的t检验,统计量为检验,统计量为u u服从正态分布,即为标准正态离差。服从正态分布,即为标准正态离差。Logistic回归系数的区间估计回归系数的区间估计 上述三种方法中,似然比检验上述三种方法中,似然比检验最可靠,比分检验一般与它相一致,最可靠,比分检验一般与它相一致,但两者均要求较大的计算量;而但两者均要求较大的计算量;而Wald检验未考虑各因素间的综合检验未考虑各因素间的综合作用,在因素间有共线性时结果不作用,在因素间有共线性时结果不如其它两者可靠。如其它两者可靠。五、回归系数的意义五、回归系数的意义 单纯从数学上讲,与多元线性单纯从数学上讲,与多元线性回归分析中回归系数的解释并无不回归分析中回归系数的解释并无不同,亦即同,亦即bi表示表示xi改变一个单位时,改变一个单位时,logit P的平均变化量。的平均变化量。流行病学中的一些基本概念:流行病学中的一些基本概念:相对危险度相对危险度(relative risk):RR=P1/P2比数比数Odds=P/(1-P)比数比比数比OR=P/(1-P)/P/(1-P)在患病率较小情况下,在患病率较小情况下,ORRRLogistic回归中的常数项(回归中的常数项(b0)表示,表示,在不接触任何潜在危险保护因素条在不接触任何潜在危险保护因素条件下,效应指标发生与不发生事件的件下,效应指标发生与不发生事件的概率之比的对数值。概率之比的对数值。Logistic回归中的回归系数回归中的回归系数(bi)表示,表示,某一因素改变一个单位时,效应指标某一因素改变一个单位时,效应指标发生与不发生事件的概率之比的对数发生与不发生事件的概率之比的对数变化值,即变化值,即OR的对数值。的对数值。Logistic回归系数的意义回归系数的意义分析因素分析因素xi为二分类变量时,存在(暴为二分类变量时,存在(暴露)露)xi,不存在(未暴露)不存在(未暴露)xi,则则Logistic回归中回归中xi的系数的系数bi就是暴露与就是暴露与非暴露优势比的对数值即非暴露优势比的对数值即OR=exp(bi)=e(bi)分析因素分析因素xi为多分类变量时,为方便起为多分类变量时,为方便起见,常用见,常用1,2,k分别表示分别表示k个不个不同的类别。进行同的类别。进行Logistic回归分析前需回归分析前需将该变量转换成将该变量转换成k-1个指示变量或哑变个指示变量或哑变量量(design/dummy variable),这样指这样指示变量都是一个二分变量,每一个指示变量都是一个二分变量,每一个指示变量均有一个估计系数,即回归系示变量均有一个估计系数,即回归系数,其解释同前。数,其解释同前。分析因素分析因素xi为等级变量时,如果每个等级的为等级变量时,如果每个等级的作用相同,可按计量资料处理:如以最小或作用相同,可按计量资料处理:如以最小或最大等级作参考组,并按等级顺序依次取为最大等级作参考组,并按等级顺序依次取为0,1,2,。此时,。此时,e(bi)表示表示xi增加一个增加一个等级时的优势比,等级时的优势比,e(k*bi)表示表示xi增加增加k个等级个等级时的优势比。如果每个等级的作用不相同,时的优势比。如果每个等级的作用不相同,则应按多分类资料处理。则应按多分类资料处理。分析因素分析因素xi为连续性变量时,为连续性变量时,e(bi)表示表示xi增加增加一个计量单位时的优势比。一个计量单位时的优势比。多因素多因素Logistic回归分析时,回归分析时,对回归系数的解释都是指在其它对回归系数的解释都是指在其它所有自变量固定的情况下的优势所有自变量固定的情况下的优势比。存在因素间交互作用时,比。存在因素间交互作用时,Logistic回归系数的解释变得更回归系数的解释变得更为复杂,应特别小心。为复杂,应特别小心。根据根据Wald检验,可知检验,可知Logistic回归回归系数系数bi服从服从u分布。因此其可信区间为分布。因此其可信区间为进而,优势比进而,优势比e(bi)的可信区间为的可信区间为六、六、Logistic回归分析方法回归分析方法基本思想同线性回归分析。基本思想同线性回归分析。从所用的方法看,有强迫法、前进法、从所用的方法看,有强迫法、前进法、后退法和逐步法。在这些方法中,筛选变量后退法和逐步法。在这些方法中,筛选变量的过程与线性回归过程的完全一样。但其中的过程与线性回归过程的完全一样。但其中所用的统计量不再是线性回归分析中的所用的统计量不再是线性回归分析中的F统计统计量,而是以上介绍的参数检验方法中的三种量,而是以上介绍的参数检验方法中的三种统计量之一。统计量之一。为计算方便,通常向前选取为计算方便,通常向前选取变量用似然比或比分检验,而向变量用似然比或比分检验,而向后剔除变量常用后剔除变量常用Wald检验。检验。七、条件七、条件Logistic回归回归对配对对配对/比调查资料,应该用条件比调查资料,应该用条件Logistic回归分析。回归分析。对于配比资料,第对于配比资料,第i个配比组个配比组可以建立一个可以建立一个Logistic回归:回归:假设自变量在各配比组中对结果变量假设自变量在各配比组中对结果变量的作用是相同的,即自变量的回归系的作用是相同的,即自变量的回归系数与配比组无关。数与配比组无关。配比设计的配比设计的Logistic回归模型回归模型其中不含常数项。其中不含常数项。可以看出此回归模型与非条件可以看出此回归模型与非条件Logistic回归模型十分相似,只不过这里的参数回归模型十分相似,只不过这里的参数估计是根据条件概率得到的,因此称为估计是根据条件概率得到的,因此称为条件条件Logistic回归模型。回归模型。条件条件Logistic回归的回归系数检验与分回归的回归系数检验与分析,和非条件析,和非条件Logistic回归完全相同。回归完全相同。八、Logistic回归的应用回归的应用危险危险/保健因素的筛选,并确定其作用保健因素的筛选,并确定其作用大小。大小。预测:预测某种情况下或者某个病例,预测:预测某种情况下或者某个病例,某特定事件发生的概率。某特定事件发生的概率。九、Logistic回归应用实例回归应用实例十、注意事项十、注意事项应用条件应用条件 1.各观察对象间相互独立;各观察对象间相互独立;2.logit P与自变量呈线性关系。与自变量呈线性关系。异常值异常值计量资料间的共线性问题计量资料间的共线性问题暴露率暴露率样本量样本量谢谢!谢谢!

    注意事项

    本文(Logistic回归分析方法.ppt)为本站会员(qwe****56)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开