九年级数学上册第二十二章二次函数教案(新版)新人教版.pdf
-
资源ID:80696742
资源大小:135.73KB
全文页数:5页
- 资源格式: PDF
下载积分:19.9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
九年级数学上册第二十二章二次函数教案(新版)新人教版.pdf
第二十二章 二次函数 1 (安徽)若二次函数配方后为则、的值分别为()(A)0.5 (B)0.1 (C)4.5 (D)4.1【答案】C 2 (甘肃兰州)二次函数的图象的顶点坐标是 ()A (1,8)B(1,8)C(1,2)D(1,4)【答案】A 3(甘肃兰州)抛物线图象向右平移 2 个单位再向下平移 3 个单位,所得图象的解析式为,则 b、c 的值为 ()A.b=2,c=2 B.b=2,c=0 C.b=2,c=1 D.b=3,c=2【答案】B 4 (甘肃兰州)抛物线图象如图所示,则一次函数与反比例函数在同一坐标系内的图象大致为 ()第 15 题图【答案】D 5 (江苏盐城)给出下列四个函数:;()时,y随x的增大而减小的函数有 ()A 1 个 B2 个 C3 个 D4 个【答案】C 6 (浙江金华)已知抛物线的开口向下,顶点坐标为(2,3),那么该抛物线有 ()A.最小值 3 B.最大值3 C.最小值 2 D.最大值 2【答案】B 7 (山东济南)在平面直角坐标系中,抛物线与轴的交点的个数是()A 3 B2 C1 D0【答案】B 8 (浙江衢州)下列四个函数图象中,当x0 时,y随x的增大而增大的是()【答案】C 9.(福建三明)抛物线的图象和 x 轴有交点,则 k 的取值范围是()A B且 C D且【答案】B 10(河北)如图 5,已知抛物线的对称轴为,点A,B均在抛物线上,且AB与x轴平行,其中点A的坐标为(0,3),则点B的坐标为 ()A (2,3)B(3,2)C(3,3)D (4,3)【答案】D 11(山东莱芜)二次函数的图象如图所示,则一次函数的 图象不经过 ()A 第一象限 B第二象限 C第三象限 D 第四象限【答案】D 12(贵州)函数在同一直角坐标系内的图象大致是()【答案】C.13(贵州)把抛物线y=x+bx+c的图象向右平移 3 个单位,再向下平移 2 个单位,所得图象的解析式为y=x3x5,则()A b=3,c=7 B b=6,c=3 Cb=9,c=5 D b=9,c=21【答案】A.14(湖北荆州)若把函数 y=x的图象用 E(x,x)记,函数 y=2x+1的图象用 E(x,2x+1)记,则 E(x,)可以由 E(x,)怎样平移得到?A向上平移个单位 B向下平移个单位 C向左平移个单位 D向右平移个单位【答案】D 15(北京)将二次函数yx22x3,化为y(xh)2k的形式,结果为()A y(x1)24 B y(x1)24 Cy(x1)22 D y(x1)22【答案】D 16(山东泰安)下列函数:;,其中的值随值增大而增大的函数有()A、4 个 B、3 个 C、2 个 D、1 个 【答案】C 17(江苏徐州)平面直角坐标系中,若平移二次函数 y=(x2009)(x2010)+4的图象,使其与 x 轴交于两点,且此两点的距离为 1 个单位,则平移方式为 A向上平移 4 个单位 B向下平移 4 个单位 C向左平移 4 个单位 D向右平移 4 个单位【答案】B 18(甘肃)向空中发射一枚炮弹,经 x 秒后的高度为 y 米,且时间与高度的关系为 y=ax2bx+c(a 0)若此炮弹在第 7 秒与第 14 秒时的高度相等,则在下列时间中炮弹所在高度最高的是()A 第 8 秒 B第 10 秒 C第 12 秒 D第 15 秒【答案】B 二、填空题 1 (湖南株洲)已知二次函数(为常数),当取不同的值时,其图象构成一个“抛物线系”下图分别是当,时二次函数的图象.它们的顶点在一条直线上,这条直线的解析式是 .【答案】2(浙江宁波)如图,已知P的半径为 2,圆心P在抛物线上运动,当P与轴相切时,圆心P的坐标为 .【答案】或(对一个得 2 分)三、解答题 1 (湖北省咸宁)已知二次函数的图象与轴两交点的坐标分别为(,0),(,0)()(1)证明;(2)若该函数图象的对称轴为直线,试求二次函数的最小值【答案】(1)证明:依题意,是一元二次方程的两根 根据一元二次方程根与系数的关系,得,(2)解:依题意,由(1)得 二次函数的最小值为 2 (云南楚雄)已知:如图,抛物线与轴相交于两点A(1,0),B(3,0).与轴相交于点C(0,3)(1)求抛物线的函数关系式;(2)若点D()是抛物线上一点,请求出的值,并求出此时ABD 的面积【答案】解:(1)由题意可知 解得 ,所以抛物线的函数关系式为(2)把D()代人函数解析式中,得 所以 3 (黑龙江哈尔滨)体育课上,老师用绳子围成一个周长为 30 米的游戏场地,围成的场地是如图所示的矩形 ABCD。设边 AB 的长为 x(单位:米),矩形 ABCD的面积为 S(单位:平方米)(1)求 S 与 x 之间的函数关系式(不要求写出自变量 x 的取值范围);(2)若矩形 ABCD的面积为 50 平方米,且 ABAD,请求出此时 AB 的长。【答案】解:(1)根据题意,(2)当 S=50时,整理得 解得 当 AB=5时,AD=10;当 AB=10时,AD=5,AB=5 答:当矩形 ABCD的面积为 50 平方米且时,AB 的长为 5 米 4 (山东青岛)某市政府大力扶持大学生创业李明在政府的扶持下投资销售一种进价为每件 20 元的护眼台灯销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(2)如果李明想要每月获得 2000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种护眼台灯的销售单价不得高于 32 元,如果李明想要每月获得的利润不低于 2000元,那么他每月的成本最少需要多少元?(成本进价销售量)【答案】解:(1)由题意,得:w=(x20)y=(x20)().答:当销售单价定为 35 元时,每月可获得最大利润 3 分(2)由题意,得:解这个方程得:x1=30,x2=40 答:李明想要每月获得 2000元的利润,销售单价应定为 30 元或 40 元.6 分(3)法一:,抛物线开口向下.当 30 x40 时,w2000 x32,当 30 x32 时,w2000 设成本为P(元),由题意,得:,P随x的增大而减小.当x=32时,P最小3600.答:想要每月获得的利润不低于 2000元,每月的成本最少为 3600元 10 分