【优选】北师大初中数学中考总复习:几何初步及三角形--巩固练习(提高).pdf
-
资源ID:80704561
资源大小:801.46KB
全文页数:7页
- 资源格式: PDF
下载积分:19.9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
【优选】北师大初中数学中考总复习:几何初步及三角形--巩固练习(提高).pdf
中考总复习:几何初步及三角形巩固练习(提高)【巩固练习】一、选择题 1如图所示,下列说法不正确的是().A点 B 到 AC 的垂线段是线段 AB B点 C 到 AB 的垂线段是线段 AC C线段 AD 是点 D 到 BC 的垂线段 D线段 BD 是点 B 到 AD 的垂线段 2如图,标有角号的 7 个角中共有_对内错角,_对同位角,_对同旁内角.()A.4、2、4 B.4、3、4 C.3、2、4 D.4、2、3 3把一张长方形的纸片按下图所示的方式折叠,EM、FM 为折痕,折叠后的 C 点落在 BM 或 BM 的延长线上,则EMF 的度数是().A.85 B.90 C.95 D.100 4如图,在 ABC 中,已知点 D,E,F 分别为边 BC,AD,CE 的中点,且 SABC=4cm2,则阴影面积 等于().A.2cm2 B.1cm2 C.cm2 D.cm2 5(2014 秋金昌期末)钟表 4 点 30 分时,时针与分针所成的角的度数为()A45 B30 C60 D75 6.ABC 中,AB=AC=,BC=6,则腰长 的取值范围是().A.B.C.D.二、填空题 7如图,ADBC,BD 平分ABC,且A=110,则D=_ 8.(2014 春兴业县期末)如图,已知 ABCDEF,则x、y、z 三者之间的关系是 9已知 a、b、c 是ABC 的三边,化简|a+bc|+|bac|c+ba|=_.10已知在ABC 中,ABC 和ACB 三等分线分别交于点 D、E,若A=n,则BDC=_,BEC=_.11在ABC 中,若A+B=C,则此三角形为_三角形;若A+B C,则此三角形是_ 三角形.12如图所示,ABC 与ACB 的内角平分线交于点 O,ABC 的内角平分线与ACB 的外角平分线交于 点 D,ABC 与ACB 的相邻外角平分线交于点 E,且A=60,则BOC=_,D=_,E=_.三、解答题 13(2015 春山亭区期末)如图,ADBC,BAC=70,DEAC 于点 E,D=20(1)求B 的度数,并判断ABC 的形状;(2)若延长线段 DE 恰好过点 B,试说明 DB 是ABC 的平分线 14平面内的两条直线有相交和平行两种位置关系.(1)如图 a,若 ABCD,点 P 在 AB、CD 外部,则有B=BOD,又因BOD 是POD 的外角,故 BOD=BPD+D,得BPD=B-D将点 P 移到 AB、CD 内部,如图 b,以上结论是否成立?若成立,说明理由;若不成立,则BPD、B、D 之间有何数量关系?请证明你的结论;(2)在图 b 中,将直线 AB 绕点 B 逆时针方向旋转一定角度交直线 CD 于点 Q,如图 c,则BPDB DBQD 之间有何数量关系?(不需证明);(3)根据(2)的结论求图 d 中A+B+C+D+E+F 的度数 15已知:如图,D、E 是ABC 内的两点.求证:AB+ACBD+DE+EC.16.如图,求A+B+C+D+E 的度数.【答案与解析】一、选择题 1.【答案】C.【解析】重点考查垂线段的定义.2.【答案】A.3.【答案】B.【解析】因为折叠,所以1=2,3=4,又因为1=2+3+4=180,所以EMF=2+3=90.4.【答案】B.【解析】D,E 分别为边 BC,AD 的中点,S ABD=S ADC=2cm2 S ABE=S AEC=1cm2 S BEC=2cm2 又因为 F 分别为边 CE 的中点,所以 S BEF=S BCF=1cm2.5.【答案】C.【解析】4 点 30 分时,时针指向 4 与 5 之间,分针指向 6,钟表 12 个数字,每相邻两个数字之间 的夹角为 30,4 点 30 分时分针与时针的夹角是 23015=45 度故选 A 6.【答案】B.【解析】2x6,x3.二、填空题 7【答 案】35.8【答 案】x=180+zy.【解析】CDEF,CEF=180y,ABEF,x=AEF=z+CEF,即 x=180+zy 故答案为:x=180+zy 9【答 案】3abc.【解析】a、b、c 是ABC 的三边,a+bc,a+cb,c+ba。即 a+bc0,bac0,c+ba0,原式=a+bc+(a+cb)(c+ba)=a+bc+a+cb+acb=3abc.10【答 案】60+2 3 1 n;120+n.3 【解析】BDC=180(DBC+DCB)=180 2 3 (ABC+ACB)2=180(180A)3 2=60+n 3 1 同理BEC=120+n.3 11【答案】直角三角形;钝角三角形.12【答 案】120;30,60.【解析】因为ABC 内角和=180,OB 平分ABC,OC 平分ACB,A=60 OBC+OCB=(180-60)2=60,BOC=120,又因 CD 为ACB 外角平分线,所以OCD=(ACB+ACF)=90,BOC=OCD+D,所以D=30,ABC 与ACB 的相邻外角平分线交于点 E,所以OBE=OCE=90,在四边形 OBEC 中,E+OBE+OCE+BOC=360,E=60.三、解答题 13.【答案与解析】解:(1)DEAC 于点 E,D=20,CAD=70,ADBC,C=CAD=70,BAC=70,B=40,AB=AC,ABC 是等腰三角形;(2)延长线段 DE 恰好过点 B,DEAC,BDAC,ABC 是等腰三角形,DB 是ABC 的平分线 14.【答案与解析】(1)不成立,结论是BPD=B+D.延长 BP 交 CD 于点 E,ABCD.B=BED.又BPD=BED+D,BPD=B+D.(2)结论:BPD=BQD+B+D.(3)由(2)的结论得:AGB=A+B+E.又AGB=CGF,CGF+C+D+F=360,A+B+C+DE+F=360.15.【答案与解析】延长 DE 分别交 AB、AC 于 F、G.FB+FDBD,AF+AGFG,EG+GCEC,FB+FD+FA+AG+EG+GCBD+FG+EC.即 AB+AC+FD+EGBD+FD+EG+DE+EC,AB+ACBD+DE+EC 即 BD+DE+ECAB+AC.16.【答案与解析】如下图,连接 AC,则有DFA=FAC+FCA=D+E,所以A+B+C+D+E =A+B+C+FAC+FCA =BAC+B+BCA =180.