欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    泰勒公式及其应用典型例题.pdf

    • 资源ID:80721213       资源大小:264.14KB        全文页数:3页
    • 资源格式: PDF        下载积分:19.9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要19.9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    泰勒公式及其应用典型例题.pdf

    .上述工整且有规律的求系数过程,不难归纳出:于是,所求的多项式为:(2)二、【解决问题二】泰勒(Tayler)中值定理 假设函数在含有的*个开区间具有直到阶导数,则当时,可以表示成 这里是与之间的*个值。先用倒推分析法探索证明泰勒中值定理的思路:这说明:只要对函数及在与之间反复使用次柯西中值定理就有可能完成该定理的证明工作。【证明】以与为端点的区间或记为,。函数在 上具有直至阶的导数,且 函数在 上有直至阶的非零导数,且 于是,对函数及在 上反复使用次柯西中值定理,有.三、几个概念 1、此式称为函数按的幂次展开到阶的泰勒公式;或者称之为函数在点处的阶泰勒展开式。当时,泰勒公式变为 这正是拉格朗日中值定理的形式。因此,我们也称泰勒公式中的余项。为拉格朗日余项。2、对固定的,假设 有 此式可用作误差界的估计。故 说明:误差是当时较高阶无穷小,这一余项表达式称之为皮亚诺余项。3、假设,则在 与之间,它表示成形式,泰勒公式有较简单的形式 麦克劳林公式 近似公式 误差估计式【例 1】求的麦克劳林公式。解:,.利用泰勒展开式求函数的极限,可以说是求极限方法中的终极武器,使用这一方法可求许多其它方法难以处理的极限。【例 4】利用泰勒展开式再求极限。解:,【注解】现在,我们可以彻底地说清楚下述解法的错误之处 因为,从而 当时,应为【例 5】利用三阶泰勒公式求的近似值,并估计误差。解:故:

    注意事项

    本文(泰勒公式及其应用典型例题.pdf)为本站会员(w****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开