统计学基础-第八章-相关与回归分析.pdf
统计学基础 第八章 相关与回归分析【教学目的】1。掌握相关系数的测定和性质 2.明确相关分析与回归分析的特点 3。建立回归直线方程,掌握估计标准误差的计算【教学重点】1。相关关系、相关分析和回归分析的概念 2。相关系数计算 3。回归方程的建立和依此进行估计和预测【教学难点】1.相关分析和回归分析的区别 2。相关系数的计算 3.回归系数的计算 4.估计标准误的计算【教学时数】教学学时为 8 课时【教学内容参考】第一节 相关关系 一、相关关系的含义 宇宙中任何现象都不是孤立地存在的,而是普遍联系和相互制约的。这种现象间的相互联系、相互制约的关系即为相关关系.相关关系因其依存程度的不同而表现出相关程度的差别。有些现象间存在着严格的数据依存关系,比如,在价格不变的条件下销售额量之间的关系,圆的面积与半径之间的关系等等,均具有显著的一一对应关系。这些关系可由数学中的函数关系来确切的描述,因而也可以认为是一种完全相关关系。有些现象间的依存关系则没有那么严格。当一种现象的数量发生变化时,另一种现象的数量却在一定的范围内发生变化,比如身高与体重的关系就是如此。一般来说,身高越高,体重越重,但二者之间的关系并非严格意义上的对应关系,身高 1。75 米的人,对应的体重会有多个数值,因为影响体重的因素不只身高而已,它还会受遗传、饮食习惯等因素的制约和影响。社会经济现象中大多存在这种非确定的相关关系.在统计学中,这些在社会经济现象之间普遍存在的数量依存关系,都成为相关关系。在本章,我们主要介绍那些能用函数关系来描述的具有经济统计意义的相关关系.二、相关关系的特点 1.现象之间确实存在数量上的依存关系 如果一个现象发生数量上的变化,则另一个现象也会发生数量上的变化。在相互依存的两个变量中,可以根据研究目的,把其中的一个变量确定为自变量,把另一个对应变量确定为因变量。例如,把身高作为自变量,则体重就是因变量.2.现象之间数量上的关系是不确定的 相关关系的全称是统计相关关系,它属于变量之间的一种不完全确定的关系。这意味着一个变量虽然受另一个(或一组)变量的影响,却并不由这一个(或一组)变量完全确定。例如,前面提到的身高和体重之间的关系就是这样一种关系。三、相关关系的种类 现象之间的相互关系很复杂,它们涉及的变动因素多少不同,作用方向不同,表现出来的形态也不同。相关关系大体有以下几种分类:(一)正相关与负相关 按相关关系的方向分,可分为正相关和负相关。当两个因素(或变量)的变动方向相同时,即自变量x值增加(或减少),因变量y值也相应地增加(或减少),这样的关系就是正相关。如家庭消费支出随收入增加而增加就属于正相关。如果两个因素(或变量)变动的方向相反,即自变量x值增大(或减小),因变量y值随之减小(或增大),则称为负相关。如商品流通费用率随商品经营的规模增大而逐渐降低就属于负相关。(二)单相关与复相关 按自变量的多少分,可分为单相关和复相关.单相关是指两个变量之间的相关关系,即所研究的问题只涉及到一个自变量和一个因变量,如职工的生活水平与工资之间的关系就是单相关.复相关是指三个或三个以上变量之间的相关关系,即所研究的问题涉及到若干个自变量与一个因变量,如同时研究成本、市场供求状况、消费倾向对利润的影响时,这几个因素之间的关系是复相关。(三)线性相关与非线性相关 按相关关系的表现形态分,可分为线性相关与非线性相关.线性相关是指在两个变量之间,当自变量x值发生变动时,因变量y值发生大致均等的变动,在相关图的分布上,近似地表现为直线形式。比如,商品销售额与销售量即为线性相关。非线性相关是指在两个变量之间,当自变量x值发生变动时,因变量y值发生不均等的变动,在相关图的分布上,表现为抛物线、双曲线、指数曲线等非直线形式.比如,从人的生命全过程来看,年龄与医疗费支出呈非线性相关。(四)完全相关、不完全相关与不相关 按相关程度分,可分为完全相关、不完全相关和不相关。完全相关是指两个变量之间具有完全确定的关系,即因变量y值完全随自变量x值的变动而变动,它在相关图上表现为所有的观察点都落在同一条直线上,这时,相关关系就转化为函数关系.不相关是指两个变量之间不存在相关关系,即两个变量变动彼此互不影响.自变量x值变动时,因变量y值不随之作相应变动。比如,家庭收入多少与孩子多少之间不存在相关关系.不完全相关是指介于完全相关和不相关之间的一种相关关系.比如,农作物产量与播种面积之间的关系。不完全相关关系是统计研究的主要对象.第二节 相关分析 一、相关分析的主要内容 相关分析是指对客观现象的相互依存关系进行分析、研究,这种分析方法叫相关分析法。相关分析的目的在于研究相互关系的密切程度及其变化规律,以便作出判断,进行必要的预测和控制.相关分析的主要内容包括:(一)确定现象之间有无相关关系 这是相关与回归分析的起点,只有存在相互依存关系,才有必要进行进一步的分析.(二)确定相关关系的密切程度和方向 确定相关关系密切程度主要是通过绘制相关图表和计算相关系数。只有对达到一定密切程度的相关关系,才可配合具有一定意义的回归方程。(三)确定相关关系的数学表达式 为确定现象之间变化上的一般关系,我们必须使用函数关系的数学公式作为相关关系的数学表达式。如果现象之间表现为直线相关,我们可采用配合直线方程的方法;如果现象之间表现为曲线相关,我们可采用配合曲线方程的方法。(四)确定因变量估计值误差程度 使用配合直线或曲线的方法可以找到现象之间一般的变化关系,也就是自变量x变化时,因变量y将会发生多大的变化。根据得出的直线方程或曲线方程我们可以给出自变量的若干数值,球的因变量的若干个估计值。估计值与实际值是有出入的,确定因变量估计值误差大小的指标是估计标准误差。估计标准误差大,表明估计不太精确;估计标准误差小,表明估计较精确。二、相关关系的测定 相关分析的主要方法有相关表、相关图和相关系数三种。现将这三种方法分述如下:(一)相关表 在统计中,制作相关表或相关图,可以直观地判断现象之间大致存在的相关关系的方向、形式和密切程度.在对现象总体中两种相关变量作相关分析,以研究其相互依存关系时,如果将实际调查取得的一系列成对变量值的资料顺序地排列在一张表格上,这张表格就是相关表.相关表仍然是统计表的一种.根据资料是否分组,相关表可以分为简单相关表和分组相关表。1.简单相关表 简单相关表是资料未经分组的相关表,它是把自变量按从小到大的顺序并配合因变量一一对应平行排列起来的统计表。【案例】为研究分析产量(x)与单位产品成本(y)之间的关系,从 30 个同类型企业调查得到的原始资料并将产量按从小到大的顺序排列,可编制简单相关表,结果见表 82 所示。表 82 产量和单位产品成本原始资料 产量(件)20 20 20 20 20 20 20 20 20 30 30 30 30 30 40 单位产品成本(元)15 16 16 16 16 18 18 18 18 15 15 16 16 16 14 产量(件)40 40 40 40 50 50 50 50 50 50 60 60 60 60 60 单位产品成本(元)15 15 15 16 14 14 15 15 15 16 14 14 14 14 15 从表 8-2 中可以看出,随着产量的提高,单位产品成本却有相应降低的趋势,尽管在同样产量的情况下,单位产品成本存在差异,但是两者之间仍然存在一定的依存关系.2。分组相关表 在大量观察的情况下,原始资料很多,运用简单相关表表示就很难使用。这时就要将原始资料进行分组,然后编制相关表,这种相关表称为分组相关表。分组相关表包括单变量分组相关表和双变量分组相关表两种.(1)单变量分组表。在原始资料很多时,对自变量数值进行分组,而对应的因变量不分组,只计算其平均值,根据资料具体情况,自变量可以是单项式,也可以是组距式.【案例】以上例原始资料为例,将同类型 30 个企业的产量(x)与单位产品成本(y)原始资料,按产量分组编制单变量分组表,结果见表 8-3。表 83 产量和单位产品成本简单相关表 产量 (件)企业数 (个)单位产品成本 (元)20 9 16.8 30 5 15.6 40 5 15.0 50 6 14.8 60 5 14.2 从表 8-3 中可以较明显地看出二者之间存在正相关关系.(2)双变量分组表.对两种有关变量都进行分组,交叉排列,并列出两种变量各组间的共同次数,这种统计表称为双变量分组相关表.这种表格形似棋盘,故又称棋盘式相关表。【案例】仍以原始资料为例,将同类型 30 个企业的产量(x)与单位产品成本(y)原始资料,编制双变量分组相关表,结果见表 8-4。表 8-4 产量和单位产品成本双变量分组相关表 xyn单位产品成本(元)产量 (件)合计 20 30 40 50 60 18 4 -4 16 4 3 1 1-9 15 1 2 3 3 1 10 14-1 2 4 7 合计 9 5 5 6 5 30 从表 84 看出,产量集中在左上角到右下角的对角斜线上,表明产量与单位产品成本是负相关关系。制作双变量分组相关表,须注意自变量为纵栏标题,按变量值从小到大自左向右排列,因变量为横行标题,按变量值从大到小自上而下排列.这样做的目的是将相关表与相关图结合起来,便于一致性判断相关关系的性质。(二)相关图 相关图又称散点图。它是以直角坐标系的横轴代表自变量x,纵轴代表因变量y,将两个变量间相对应的变量值用坐标点的形式描绘出来,用来反映两变量之间相关关系的图形.相关图可以按未经分组的原始资料来编制,也可以按分组的资料,包括按单变量分组相关表和双变量分组相关表来编制.通过相关图将会发现,当y对x是函数关系时,所有的相关点都会分布在某一条线上;在相关关系的情况下,由于其他因素的影响,这些点并非处在一条线上,但所有相关点的分布也会显示出某种趋势。所以相关图会很直观地显示现象之间相关的方向和密切程度。【案例】以上例原始资料中编制的产量与单位产品成本单变量分组相关表为例,绘制相关图,结果见图8-1.从图 81 中可以看出,单位产品成本随着产量增加而降低,并且散布点的分布近似地表现为一条直线.由此可以判断产量与单位产品成本两个变量之间存在着直线负相关关系.(三)相关系数 相关表和相关图大体说明变量之间有无关系,但它们的相关关系的紧密程度却无法表达,因此,需运用数学解析方法,构建一个恰当的数学模型来显示相关关系及其密切程度。对现象之间的相关关系的紧密程度做出确切的数量说明,就需要计算相关系数.1.相关系数的计算 相关系数是在直线相关条件下,说明两个现象之间关系密切程度的统计分析指标,记为。相关系数的计算公式为 xy 222111yynxxnyyxxnyxxy 式中 n资料项数;x-x变量的算术平均数;y-y变量的算术平均数 x-x变量的标准差;yy变量的标准差;xy-xy变量的协方差。在实际问题中,如果根据原始资料计算相关系数,可运用相关系数的简捷法计算,其计算公式为 2222 yynxxnyxxyn 【案例】根据教材中表 8-5 中的资料,已知居民家庭月收入与消费支出之间为直线相关,计算居民家庭月收入与消费支出的相关系数(见表 8-6)。表 8-3 编 号 月收入 x(百元)消费支出 y(百元)x2 y2 xy 1 15 12 225 144 180 2 18 15 324 225 270 3 20 18 400 324 360 4 25 20 625 400 500 5 30 28 900 784 840 6 40 36 1600 1296 1440 7 62 42 3844 1764 2604 8 75 53 5625 2809 3975 9 88 60 7744 3600 5280 10 92 65 8464 4225 5980 合计 465 349 29751 15571 21429 99.034915571104652975110349465214291022 2.相关系数的分析 明晰相关系数的性质是进行相关系数分析的前提.现将相关系数的性质总结如下:(1)相关系数的数值范围,是在-1 和+1 之间,即:-11。(2)计算结果,当0 时,表示x与y为正相关;当0 时,x与y为负相关。(3)相关系数的绝对值越接近于 1,表示相关关系越强;越接近于 0,表示相关关系越弱。如果=1,则表示两个现象完全直线相关。如果|=0,则表示两个现象完全不相关(不是直线相关).(4)相关系数的绝对值在 0.3 以下是无直线相关,0。3 以上是有直线相关,0.30。5 是低度直线相关,0。50.8 是显著相关,0.8 以上是高度相关。【案例】上例中计算的相关系数为 0.99,说明消费支出与居民家庭月收入呈高度正相关,也就是家庭收入越高,消费支出也越高.第三节 回归分析 一、回归分析的含义 就一般意义而言,相关分析包括回归和相关两方面内容,因为回归与相关都是研究两变量相互关系的分析方法。但就具体方法而言,回归分析和相关分析是有明显差别的。相关图表、相关系数能判定两变量之间相关的方向和密切程度,但不能指出两变量相互关系的具体表现形式,也无法从一个变量的变化来推测另一个变量的变化情况。回归分析就是对具有相关关系的两个或两个以上变量的数量变化规律进行测定,确立一个相应的数学表达式,并进行估算和预测的一种统计方法。回归分析和相关分析是互相补充、密切联系的.相关分析需要回归分析来表明数量关系的具体表现形式,而回归分析则应该建立在相关分析的基础上。只有依靠相关分析,对现象的数量变化规律判明具有密切相关关系后,再进行回归分析,求其相关的具体表现形式,这样才具有实际意义。回归分析建立的数学表达式称为回归方程(或回归模型).回归方程为线性方程的,称为线性回归;回归方程为非线性方程的称为非线性回归。两个变量之间的回归称为一元回归(简单回归);三个或三个以上变量之间的回归称为多元回归。本章只介绍一元线性回归,即简单线性回归分析方法。二、回归分析的主要内容(一)建立相关关系的回归方程 利用回归分析方法,配合一个表明变量之间数量上相关的方程式,而且根据自变量x的变动,来预测因变量y的变动。(二)测定因变量的估计值与实际值的误差程度 通过计算估计标准误差指标,可以反映因变量估计值的准确程度,从而将误差控制在一定范围内。三、回归分析的特点 回归分析与相关分析比较具有以下特点:1.在相关分析中,各变量都是随机变量;而回归分析中,因变量是随机变量,自变量不是随机的,而是给定的数值。2.在相关分析中,各变量之间是对等关系,调换变量的位置,不影响计算的结果;而在回归分析中,自变量与因变量之间不是对等的关系,调换其位置,将得到不同的回归方程。因此,在进行回归分析时,必须根据研究目的,先确定哪一个是自变量,哪一个是因变量。3。相关分析计算的相关系数是一个绝对值在 0 与 1 之间的抽象系数,其数值的大小反映变量之间相关关系的程度;而回归分析建立的回归方程反映的是变量之间的具体变动关系,不是抽象的系数。根据回归方程,利用自变量的给定值可以估计或推算出因变量的数值。四、一元线性回归方程的拟合 回归分析中,最简单、最基本的形式就是一元线性回归,也就是通常所说的配合直线方程式的问题。若通过观察或实验,得到n对数据nnyxyxyx,221,1的相关图上的散布点接近分布在一条直线上,就可以认为变量x与y之间存在着线性关系,可设经验公式为 bxay 式中,a与b为待定参数,也就是需要根据实际资料求解的数值,a为直线的截距,b为直线的斜率,也称回归系数,表示自变量x每变动一个单位时,因变量y的平均变动量.ba、值确定了直线的位置,ba、一旦确定,这条直线就被惟一确定了。但用于描述这n组数据的直线有许多条,究竟用哪条直线来代表两个变量之间的关系,需要一个明确的原则。我们希望选择距离各散布点最近的一条直线来代表x与y之间的关系,以便更好地反映变量之间的关系.根据这一思想确定未知参数ba、的方法,称为最小二乘法,也就是通过使得22bxayyyQ为最小值来确定ba、的方法。可见,用最小二乘法得到的直线与所有数据iiyx,的离差平方和为最小.要使Q为最小值,就要用数学中对二元函数求极值的原理,求Q关于a和b的偏导数,并令其等于 0,整理得出直线回归方程中求解参数ba、的标准方程组为 2xbxaxyxbnay 解方程组得 222xxnyxxynxxyyxxb【案例】根据表 8-2 中的数据,拟合某社区居民家庭月收入水平(x)与消费支出(y)的回归直线方程。根据表 8-3 中的计算结果,得 6398.0465297511034946521429102b 1493.5104656398.010349a 将 a 和 b 代入回归方程式得 xy6398.01493.5 y 式中代表消费支出,x 代表家庭月收入。回归系数 b=0。6398,表示家庭月收入每提高 1 个单位(百元),消费支出平均增加 0.6398 个单位(百元)。a=5。1493 代表即使月收入为 0 的情况下,消费支出也需要 5。1493(百元)。利用直线方程可以进行预测。如某家庭月收入为 150(百元),在其他条件相对稳定时,可以预测其消费支出为)(93.10111)(1193.1011506398.01493.5元百元 y 五、估计标准误差(一)估计标准误差的意义 回归方程的一个重要作用在于根据自变量的已知值推算因变量的可能值y,这个可能值或称估计值、理论值、平均值,它和真正的实际值y可能一致,也可能不一致,因而就产生了估计值的代表性问题。当y 值与y值一致时,表明推断准确;当y 值与y值不一致时,表明推断不够准确。显而易见,将一系列y 值与y值加以比较,可以发现其中存在着一系列离差,有的是正差,有的是负差,还有的为零.而回归方程的代表性如何,一般是通过计算估计标准误差指标来加以检验的。估计标准误差指标是用来说明回归方程代表性大小的统计分析指标,也简称为估计标准差或估计标准误差,其计算原理与标准差基本相同。估计标准误差说明理论值(回归直线)的代表性。若估计标准误差小,说明回归方程准确性高,代表性大;反之,估计不够准确,代表性小。(二)估计标准误差的计算 估计标准误差,是指因变量实际值与理论值离差的平均数.其计算公式为 22nyySyx 式中 yxS-估计标准差,其下标yx代表y依x而回归的方程;y 根据回归方程推算出来的因变量的估计值;y-因变量的实际值;n-数据的项数。估计标准误差的简化计算公式为 22nxybyaySyx 【案例】依据表 86 的资料,计算估计标准误差。)(82.2210214296398.03491493.51557122元nxybyaySyx(三)估计标准误差与相关系数的关系 二者在数量上具有如下的关系:221yyxS 21yyxS 式中 -相关系数;y因变量数列的标准差;yxS估计标准误差。从上面的计算公式中可以看出和yxS的变化方向是相反的。当越大时,yxS越小,这时相关密切程度较高,回归直线的代表性较大;当越小时,yxS越大,这时相关密切程度较低,回归直线的代表性较小。附录 应用 Excel 进行相关与回归分析 单元实训 相关与回归分析在经济中的运用 【实训目的】相关和回归分析是研究现象之间相关关系的一种定量分析方法。通过本实训的学习,目的是使学生熟悉相关与回归分析的基本原理及其应用,掌握相关与回归分析在实际运用中的技巧与方法。【实训资料】企业产品销售预测与分析 具体详尽资料参见本章单元实训【实训要求】1。上述两种产品销售量预测中分别采用了哪两种统计分析方法?它们有何不同?2.在什么情况下可以使用上述两种统计分析方法进行市场预测?【实训形式】综合实训资料,按照实训要求进行分组讨论。【实训时间】教学学时为 1 学时,在完成第八章的理论教学后进行。【实训地点】实训地点为机房。项目实战 统计分析五 运用相关于回归分析法分析项目课题【实战目的】通过本项目实战训练,使学生掌握应用统计软件(EXCEL)操作手段将统计整理后的项目资料运用相关与回归分析法对项目课题进行统计分析的技能.【实战要求】结合第 8 章相关与回归分析教学内容的学习,以项目小组为单位,将统计整理编制的统计表、或绘制的统计图,结合项目调查课题的任务与目的,运用相关与回归分析法对项目课题进行统计分析。【实战资料】通过“整理项目资料实战训练,各项目小组已经得到本组项目课题的电子信息资料。现需要应用统计软件(Excel)操作功能,结合项目调查课题的任务与目的,运用相关于回归分析法对项目课题进行统计分析.【实战学时】需用 2 学时来完成“运用相关与回归分析法分析项目课题”的项目实战训练。【实战地点】在电子实训室完成“运用相关与回归分析法分析项目课题”的项目实战训练。【实战操作步骤】1。取得统计整理编制的统计表或绘制的统计图。2。根据项目课题所要研究的目的与任务,选择可能具有相关关系的变量.3。运用相关关系判定方法,判定变量之间相关关系的密切程度。4.将具有高度相关关系的变量进行回归分析,拟合数学模型(本教材主要讲授了一元线性回归方程拟合模型),并进行统计分析预测。【实战案例】大学生生活费收支状况调查 相关与回归分析过程 编写调查报告 详细资料见教材。