专题.1空间几何体的结构特征及其表面积、体积-2020届高考数学一轮复习学霸提分秘籍(解析版).pdf
-
资源ID:80809272
资源大小:2.08MB
全文页数:24页
- 资源格式: PDF
下载积分:19.9金币
快捷下载

会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
专题.1空间几何体的结构特征及其表面积、体积-2020届高考数学一轮复习学霸提分秘籍(解析版).pdf
精品 拼搏 第七篇 立体几何与空间向量 专题 7.01 空间几何体的结构及其表面积、体积【考试要求】1.利用实物、计算机软件等观察空间图形,认识柱、锥、台、球及简单组合体的结构特征,能运用这些特征描述现实生活中简单物体的结构;2.知道球、棱柱、棱锥、棱台的表面积和体积的计算公式,能用公式解决简单的实际问题;3.能用斜二测法画出简单空间图形(长方体、球、圆柱、圆锥、棱柱及其简单组合)的直观图.【知识梳理】1.空间几何体的结构特征(1)多面体的结构特征 名称 棱柱 棱锥 棱台 图形 底面 互相平行且全等 多边形 互相平行且相似 侧棱 平行且相等 相交于一点,但不一定相等 延长线交于一点 侧面形状 平行四边形 三角形 梯形(2)旋转体的结构特征 名称 圆柱 圆锥 圆台 球 图形 母线 互相平行且相等,垂直于底面 相交于一点 延长线交于一点 轴截面 全等的矩形 全等的等腰三角形 全等的等腰梯形 圆 侧面展开矩形 扇形 扇环 精品 拼搏 图 2.直观图 空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中 x 轴、y 轴、z 轴两两垂直,直观图中,x轴、y轴的夹角为 45(或 135),z轴与 x轴、y轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴.平行于 x 轴和 z 轴的线段在直观图中保持原长度不变,平行于 y 轴的线段长度在直观图中变为原来的一半.3.圆柱、圆锥、圆台的侧面展开图及侧面积公式 圆柱 圆锥 圆台 侧面展开图 侧面积公式 S圆柱侧2rl S圆锥侧rl S圆台侧(r1r2)l 4.空间几何体的表面积与体积公式 名称 几何体 表面积 体积 柱 体(棱柱和圆柱)S表面积S侧2S底 VS底h 锥 体(棱锥和圆锥)S表面积S侧S底 V13S底h 台 体(棱台和圆台)S表面积S侧S上S下 V13(S上S下 S上S下)h 球 S4R2 V43R3【微点提醒】1.台体可以看成是由锥体截得的,易忽视截面与底面平行且侧棱延长后必交于一点.2.正方体的棱长为 a,球的半径为 R,则与其有关的切、接球常用结论如下:(1)若球为正方体的外接球,则 2R 3a;(2)若球为正方体的内切球,则 2Ra;(3)若球与正方体的各棱相切,则 2R 2a.3.长方体的共顶点的三条棱长分别为 a,b,c,外接球的半径为 R,则 2R a2b2c2.精品 拼搏 4.正四面体的外接球与内切球的半径之比为 31.【疑误辨析】1.判断下列结论正误(在括号内打“”或“”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.()(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.()(3)用斜二测画法画水平放置的A 时,若A 的两边分别平行于 x 轴和 y 轴,且A90,则在直观图中,A45.()(4)锥体的体积等于底面面积与高之积.()【答案】(1)(2)(3)(4)【解析】(1)反例:由两个平行六面体上下组合在一起的图形满足条件,但不是棱柱.(2)反例:如图所示的图形满足条件但不是棱锥.(3)用斜二测画法画水平放置的A 时,把 x,y 轴画成相交成 45或 135,平行于 x 轴的线段还平行于 x 轴,平行于 y 轴的线段还平行于 y 轴,所以A 也可能为 135.(4)锥体的体积等于底面面积与高之积的三分之一,故不正确.【教材衍化】2.(必修 2P10B1 改编)如图,长方体 ABCDABCD被截去一部分,其中 EHAD.剩下的几何体是()A.棱台 B.四棱柱 C.五棱柱 D.六棱柱【答案】C【解析】由几何体的结构特征,剩下的几何体为五棱柱.3.(必修 2P27 练习 1 改编)已知圆锥的表面积等于 12 cm2,其侧面展开图是一个半圆,则底面圆的半径为()精品 拼搏 A.1 cm B.2 cm C.3 cm D.32 cm【答案】B【解析】由题意,得 S表r2rlr2r2r3r212,解得 r24,所以 r2(cm).【真题体验】4.(2016全国卷)体积为 8 的正方体的顶点都在同一球面上,则该球的表面积为()A.12 B.323 C.8 D.4【答案】A【解析】设正方体的棱长为 a,则 a38,解得 a2.设球的半径为 R,则 2R 3a,即 R 3.所以球的表面积 S4R212.5.(2017全国卷)已知圆柱的高为 1,它的两个底面的圆周在直径为 2 的同一个球的球面上,则该圆柱的体积为()A.B.34 C.2 D.4【答案】B【解析】如图画出圆柱的轴截面 ABCD,O 为球心.球半径 ROA1,球心到底面圆的距离为 OM12.底面圆半径 r OA2OM232,故圆柱体积 Vr2h322134.6.(2019菏泽一中月考)用斜二测画法画水平放置的矩形的直观图,则直观图的面积与原矩形的面积之比为_.【答案】24【解析】设原矩形的长为 a,宽为 b,则其直观图是长为 a,高为b2sin 4524b 的平行四边形,所以S直观S矩形24abab24.精品 拼搏【考点聚焦】考点一 空间几何体的结构特征【例 1】(1)给出下列命题:在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()A.0 B.1 C.2 D.3(2)给出下列命题:棱柱的侧棱都相等,侧面都是全等的平行四边形;在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;存在每个面都是直角三角形的四面体;棱台的侧棱延长后交于一点.其中正确命题的序号是_.【答案】(1)A(2)【解析】(1)不一定,只有当这两点的连线平行于轴时才是母线;不一定,当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图所示,它是由两个同底圆锥组成的几何体;错误,棱台的上、下底面相似且是对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.(2)不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;正确,如图,正方体 ABCDA1B1C1D1中的三棱锥 C1ABC,四个面都是直角三角形;正确,由棱台的概念可知.精品 拼搏【规律方法】1.关于空间几何体的结构特征辨析关键是紧扣各种空间几何体的概念,要善于通过举反例对概念进行辨析,即要说明一个命题是错误的,只需举一个反例.2.圆柱、圆锥、圆台的有关元素都集中在轴截面上,解题时要注意用好轴截面中各元素的关系.3.既然棱(圆)台是由棱(圆)锥定义的,所以在解决棱(圆)台问题时,要注意“还台为锥”的解题策略.【训练 1】下列命题正确的是()A.两个面平行,其余各面都是梯形的多面体是棱台 B.两个面平行且相似,其余各面都是梯形的多面体是棱台 C.以直角梯形的一条直角腰所在的直线为旋转轴,其余三边旋转形成的面所围成的旋转体是圆台 D.用平面截圆柱得到的截面只能是圆和矩形【答案】C【解析】如图所示,可排除 A,B 选项.只有截面与圆柱的母线平行或垂直,则截得的截面为矩形或圆,否则为椭圆或椭圆的一部分.考点二 空间几何体的直观图【例 2】已知正三角形 ABC 的边长为 a,那么ABC 的平面直观图ABC的面积为()A.34a2 B.38a2 C.68a2 D.616a2【答案】D【解析】如图所示的实际图形和直观图.由斜二测画法可知,ABABa,OC12OC34a,在图中作 CDAB于 D,则 CD22OC68a.所以 SABC12ABCD12a68a616a2.故选 D.【规律方法】1.画几何体的直观图一般采用斜二测画法,其规则可以用“斜”(两坐标轴成 45或 135)和“二测”(平行于精品 拼搏 y 轴的线段长度减半,平行于 x 轴和 z 轴的线段长度不变)来掌握.2.按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积的关系 S直观图24S原图形.【训练 2】如果一个水平放置的图形的斜二测直观图是一个底角为 45,腰和上底均为 1 的等腰梯形,那么原平面图形的面积是()A.2 2 B.1 22 C.2 22 D.1 2【答案】A【解析】恢复后的原图形为一直角梯形,所以 S12(1 21)22 2.故选 A.考点三 空间几何体的表面积【例 3】(1)若正四棱锥的底面边长和高都为 2,则其全面积为_.(2)圆台的上、下底面半径分别是 10 cm 和 20 cm,它的侧面展开图的扇环的圆心角是 180,那么圆台的表面积为_(结果中保留).(3)如图直平行六面体的底面为菱形,若过不相邻两条侧棱的截面的面积分别为 Q1,Q2,则它的侧面积为_.【答案】(1)44 5(2)1 100 cm2(3)2 Q21Q22 【解析】(1)因为四棱锥的侧棱长都相等,底面是正方形,所以该四棱锥为正四棱锥,如图.由题意知底面正方形的边长为 2,正四棱锥的高为 2,则正四棱锥的斜高 PE 2212 5.所以该四棱锥的侧面积 S4122 54 5,精品 拼搏 S全224 544 5.(2)如图所示,设圆台的上底周长为 C,因为扇环的圆心角是 180,所以 CSA.又 C21020,所以 SA20.同理 SB40.所以 ABSBSA20.S表S侧S上底S下底(r1r2)ABr21r22(1020)20102202 1 100(cm2).故圆台的表面积为 1 100 cm2.(3)设直平行六面体的底面边长为 a,侧棱长为 l,则 S侧4al,因为过 A1A,C1C 与过 B1B,D1D 的截面都为矩形,从而Q1ACl,Q2BDl,则 ACQ1l,BDQ2l.又 ACBD,AC22BD22a2.Q12l2Q22l2a2.4a2l2Q21Q22,2al Q21Q22,S侧4al2 Q21Q22.【规律方法】1.求解有关多面体侧面积的问题,关键是找到其特征几何图形,如棱柱中的矩形、棱台中的直角梯形、棱锥中的直角三角形,它们是联系高与斜高、边长等几何元素间的桥梁,从而架起求侧面积公式中的未知量与条件中已知几何元素间的联系.2.多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.3.旋转体的表面积问题注意其侧面展开图的应用.【训练 3】(1)圆柱的侧面展开图是边长为 6 和 4 的矩形,则圆柱的表面积为()A.6(43)B.8(31)精品 拼搏 C.6(43)或 8(31)D.6(41)或 8(32)(2)(必修 2P36A10 改编)一直角三角形的三边长分别为 6 cm,8 cm,10 cm,绕斜边旋转一周所得几何体的表面积为_.【答案】(1)C(2)3365 cm2【解析】(1)分两种情况:以长为 6 的边为高时,4 为圆柱底面周长,则 2r4,r2,所以 S底4,S侧64242,S表2S底S侧82428(31);以长为 4 的边为高时,6 为圆柱底面周长,则 2r6,r3.所以 S底9,S表2S底S侧182426(43).(2)旋转一周所得几何体为以245 cm 为半径的两个同底面的圆锥,其表面积为 S245624583365(cm2).考点四 空间几何体的体积【例 4】(1)(必修 2P27 例 4 改编)圆柱的底面直径与高都等于球的直径,则球的体积与圆柱的体积比 V球V柱为()A.12 B.23 C.34 D.13(2)(2018天津卷)已知正方体 ABCDA1B1C1D1的棱长为 1,除面 ABCD 外,该正方体其余各面的中心分别为点 E,F,G,H,M(如图),则四棱锥 MEFGH 的体积为_.【答案】(1)B(2)112【解析】(1)设球的半径为 R,则V球V柱43R3R22R23.(2)连接 AD1,CD1,B1A,B1C,AC,因为 E,H 分别为 AD1,CD1的中点,所以 EHAC,EH12AC.因为 F,G 分别为 B1A,B1C 的中点,所以 FGAC,FG12AC.所以 EHFG,EHFG,所以四边形 EHGF 为平行四边形,又 EGHF,EHHG,所以四边形 EHGF 为正方形.又点 M 到平面 EHGF 的距离为12,所以四棱精品 拼搏 锥 MEFGH 的体积为1322212112.【规律方法】1.(直接法)规则几何体:对于规则几何体,直接利用公式计算即可.2.(割补法)不规则几何体:当一个几何体的形状不规则时,常通过分割或者补形的手段将此几何体变为一个或几个规则的、体积易求的几何体,然后再计算.经常考虑将三棱锥还原为三棱柱或长方体,将三棱柱还原为平行六面体,将台体还原为锥体.3.(等积法)三棱锥:利用三棱锥的“等积性”可以把任一个面作为三棱锥的底面.(1)求体积时,可选择“容易计算”的方式来计算;(2)利用“等积性”可求“点到面的距离”,关键是在面中选取三个点,与已知点构成三棱锥.【训练 4】(必修 2P28A3 改编)如图,将一个长方体用过相邻三条棱的中点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体体积的比为_.【答案】147【解析】设长方体的相邻三条棱长分别为 a,b,c,它截出棱锥的体积为 V1131212a12b12c148abc,剩下的几何体的体积 V2abc148abc4748abc,所以 V1V2147.考点五 多面体与球的切、接问题 【例 5】(经典母题)(2016全国卷)在封闭的直三棱柱 ABCA1B1C1内有一个体积为 V 的球.若 ABBC,AB6,BC8,AA13,则 V 的最大值是()A.4 B.92 C.6 D.323【答案】B【解析】由 ABBC,AB6,BC8,得 AC10.要使球的体积 V 最大,则球与直三棱柱的部分面相切,若球与三个侧面相切,设底面ABC 的内切圆的半径为 r.则126812(6810)r,所以 r2.2r43,不合题意.球与三棱柱的上、下底面相切时,球的半径 R 最大.精品 拼搏 由 2R3,即 R32.故球的最大体积 V43R392.【迁移探究 1】若本例中的条件变为“直三棱柱 ABCA1B1C1的 6 个顶点都在球 O 的球面上”,若 AB3,AC4,ABAC,AA112,求球 O 的表面积.【答案】见解析【解析】将直三棱柱补形为长方体 ABECA1B1E1C1,则球 O 是长方体 ABECA1B1E1C1的外接球.体对角线 BC1的长为球 O 的直径.因此 2R 324212213.故 S球4R2169.【迁移探究 2】若本例中的条件变为“正四棱锥的顶点都在球 O 的球面上”,若该棱锥的高为 4,底面边长为 2,求该球的体积.【答案】见解析【解析】如图,设球心为 O,半径为 r,则在 RtAOF 中,(4r)2(2)2r2,解得 r94,则球 O 的体积 V球43r34394324316.【规律方法】1.与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题化归为平面问题.2.若球面上四点 P,A,B,C 中 PA,PB,PC 两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体确定直径解决外接问题.【训练 5】(2019北京海淀区调研)三棱锥 PABC 中,平面 PAC平面 ABC,ABAC,PAPCAC2,AB4,则三棱锥 PABC 的外接球的表面积为()精品 拼搏 A.23 B.234 C.64 D.643【答案】D【解析】如图,设 O为正PAC 的中心,D 为 RtABC 斜边的中点,H 为 AC 中点.由平面 PAC平面ABC.则 OH平面 ABC.作 OOHD,ODOH,则交点 O 为三棱锥外接球的球心,连接 OP,又 OP23PH233222 33,OODH12AB2.R2OP2OP2OO2434163.故几何体外接球的表面积 S4R2643.【反思与感悟】1.几何体的截面及作用(1)常见的几种截面:过棱柱、棱锥、棱台的两条相对侧棱的截面;平行于底面的截面;旋转体中的轴截面;球的截面.(2)作用:利用截面研究几何体,贯彻了空间问题平面化的思想,截面可以把几何体的性质、画法及证明、计算融为一体.2.棱台和圆台是分别用平行于棱锥和圆锥的底面的平面截棱锥和圆锥后得到的,所以在解决棱台和圆台的相关问题时,常“还台为锥”,体现了转化的数学思想.3.转化与化归思想:计算旋转体的侧面积时,一般采用转化的方法来进行,即将侧面展开化为平面图形,“化曲为直”来解决,因此要熟悉常见旋转体的侧面展开图的形状及平面图形面积的求法.【易错防范】1.求组合体的表面积时:组合体的衔接部分的面积问题易出错.2.底面是梯形的四棱柱侧放时,容易和四棱台混淆,在识别时要紧扣定义,以防出错.【核心素养提升】【直观想象与逻辑推理】简单几何体的外接球与内切球问题 1.直观想象主要表现为利用几何图形描述问题,借助几何直观理解问题,运用空间想象认识事物,解决与球有关的问题对该素养有较高的要求.2.简单几何体外接球问题是立体几何中的难点和重要的考点,此类问题实质是解决球的半径长或确定球心 O精品 拼搏 的位置问题,其中球心的确定是关键.一、知识要点 1.外接球的问题(1)必备知识:简单多面体外接球的球心的结论.结论 1:正方体或长方体的外接球的球心是其体对角线的中点.结论 2:正棱柱的外接球的球心是上下底面中心的连线的中点.结论 3:直三棱柱的外接球的球心是上下底面三角形外心的连线的中点.构造正方体或长方体确定球心.利用球心 O 与截面圆圆心 O1的连线垂直于截面圆及球心 O 与弦中点的连线垂直于弦的性质,确定球心.(2)方法技巧:几何体补成正方体或长方体.2.内切球问题(1)必备知识:内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等.正多面体的内切球和外接球的球心重合.正棱锥的内切球和外接球球心都在高线上,但不一定重合.(2)方法技巧:体积分割是求内切球半径的通用做法.二、突破策略 1.利用长方体的体对角线探索外接球半径【例 1】已知各顶点都在同一球面上的正四棱柱的高为 4,体积为 16,则这个球的表面积是()A.16 B.20 C.24 D.32【答案】C【解析】设正四棱柱的底面边长为 a,高为 h,球半径为 R,则正四棱柱的体积为 Va2h16,a2,4R2a2a2h2441624,所以球的表面积为 S24.【评析】若几何体存在三条两两垂直的线段或者三条线有两个垂直,可构造墙角模型(如下图),直接用公式(2R)2a2b2c2求出 R.精品 拼搏 2.利用长方体的面对角线探索外接球半径【例 2】三棱锥中 SABC,SABC 13,SBAC 5,SCAB 10.则三棱锥的外接球的表面积为_.【答案】14【解析】如图,在长方体中,设 AEa,BEb,CEc.则 SCAB a2b2 10,SABC b2c2 13,SBAC a2c2 5.从而 a2b2c214(2R)2,可得 S4R214.故所求三棱锥的外接球的表面积为 14.【评析】三棱锥的相对棱相等,探寻球心无从着手,注意到长方体的相对面的面对角线相等,可在长方体中构造三棱锥,从而巧妙探索外接球半径.3.利用底面三角形与侧面三角形的外心探索球心【例 3】平面四边形 ABCD 中,ABADCD1,BD 2,BDCD.将其沿对角线 BD 折成四面体 ABCD,使平面 ABD平面 BCD.若四面体 ABCD 的顶点在同一球面上,则该球的体积为()A.32 B.3 C.23 D.2【答案】C 精品 拼搏【解析】如图,设 BD,BC 的中点分别为 E,F.因点 F 为底面直角BCD 的外心,知三棱锥 ABCD 的外接球球心必在过点 F 且与平面 BCD 垂直的直线 l1上.又点 E 为底面直角ABD 的外心,知外接球球心必在过点 E 且与平面 ABD 垂直的直线 l2上.因而球心为 l1与 l2的交点.又 FECD,CDBD 知 FE平面 ABD.从而可知球心为点 F.又 ABAD1,CD1 知 BD 2,球半径 RFDBC232.故 V4333332.【评析】三棱锥侧面与底面垂直时,可紧扣球心与底面三角形外心连线垂直于底面这一性质,利用底面与侧面的外心,巧探外接球球心,妙求半径.4.利用直棱柱上下底面外接圆圆心的连线确定球心【例 4】一个正六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为 3,则这个球的体积为_.【答案】43【解析】设正六棱柱底面边长为 a,正六棱柱的高为 h,底面外接圆的半径为 r,则 a12,底面积为 S6341223 38,V柱Sh3 38h98,h 3,R23221221,R1,球的体积为 V43.【评析】直棱柱的外接球、圆柱的外接球模型如下图 其外接球球心就是上下底面外接圆圆心连线的中点.5.锥体的内切球问题 (1)题设:如图,三棱锥 PABC 是正三棱锥,求其内切球的半径.图 精品 拼搏 第一步:先画出内切球的截面图,E,H 分别是两个三角形的外心;第二步:求 DH13CD,POPHr,PD 是侧面ABP 的高;第三步:由POEPDH,建立等式:OEDHPOPD,解出 r.(2)题设:如图,四棱锥 PABC 是正四棱锥,求其内切球的半径.图 第一步:先画出内切球的截面图,P,O,H 三点共线;第二步:求 FH12BC,POPHr,PF 是侧面PCD 的高;第三步:由POGPFH,建立等式:OGHFPOPF,解出 r.(3)题设:三棱锥 PABC 是任意三棱锥,求其的内切球半径.方法:等体积法,三棱锥 PABC 体积等于内切球球心与四个面构成的四个三棱锥的体积之和;第一步:先画出四个表面的面积和整个锥体体积;第二步:设内切球的半径为 r,球心为 O,建立等式:VPABCVOABCVOPABVOPACVOPBCVPABC13SABCr13SPABr13SPACr13SPBCr13(SABCSPABSPACSPBC)r;第三步:解出 r3VPABCSOABCSOPABSOPACSOPBC 6.柱体的内切球问题【例 5】体积为43的球与正三棱柱的所有面均相切,则该棱柱的体积为_.【答案】6 3【解析】设球的半径为 R,由43R343,得 R1,所以正三棱柱的高 h2.设底面边长为 a,则1332a1,所以 a2 3.所以 V34(2 3)226 3.【分层训练】【基础巩固题组】(建议用时:40 分钟)精品 拼搏 一、选择题 1.下列说法中,正确的是()A.棱柱的侧面可以是三角形 B.若棱柱有两个侧面是矩形,则该棱柱的其他侧面也是矩形 C.正方体的所有棱长都相等 D.棱柱的所有棱长都相等【答案】C【解析】棱柱的侧面都是平行四边形,选项 A 错误;其他侧面可能是平行四边形,选项 B 错误;棱柱的侧棱与底面边长并不一定相等,选项 D 错误;易知选项 C 正确.故选 C.2.一个球的表面积是 16,那么这个球的体积为()A.163 B.323 C.16 D.24【答案】B【解析】设球的半径为 R,则 S4R216,解得 R2,则球的体积 V43R3323.3.纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北,现在沿该正方体的一些棱将正方体剪开,外面朝上展平,得到如图所示的平面图形,则标“”的面的方位是()A.南 B.北 C.西 D.下【答案】B【解析】将所给图形还原为正方体,如图所示,最上面为,最左面为东,最里面为上,将正方体旋转后让东面指向东,让“上”面向上可知“”的方位为北.4.九章算术是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为 8 尺,米堆的高为 5 尺,问米堆的体积和堆放的米各为多少?”已知 1 斛米的体积约为 1.62立方尺,圆周率约为 3,估算出堆放的米约有()精品 拼搏 A.14 斛 B.22 斛 C.36 斛 D.66 斛【答案】B【解析】设米堆的底面半径为 r 尺,则2r8,所以 r16.所以米堆的体积为 V1413r251216253209(立方尺).故堆放的米约有32091.6222(斛).5.如图所示,正三棱柱 ABCA1B1C1的底面边长为 2,侧棱长为 3,D 为 BC 中点,则三棱锥 AB1DC1的体积为()A.3 B.32 C.1 D.32【答案】C【解析】如题图,在正ABC 中,D 为 BC 中点,则有 AD32AB 3,又平面 BB1C1C平面 ABC,ADBC,AD平面 ABC,由面面垂直的性质定理可得 AD平面 BB1C1C,即 AD 为三棱锥 AB1DC1的底面 B1DC1上的高,VAB1DC113SB1DC1AD13122 3 31.二、填空题 6.一水平放置的平面四边形 OABC,用斜二测画法画出它的直观图 OABC如图所示,此直观图恰好是一个边长为 1 的正方形,则原平面四边形 OABC 面积为_.精品 拼搏 【答案】2 2【解析】因为直观图的面积是原图形面积的24倍,且直观图的面积为 1,所以原图形的面积为 2 2.7.现有橡皮泥制作的底面半径为 5、高为 4 的圆锥和底面半径为 2、高为 8 的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为_.【答案】7【解析】设新的底面半径为 r,由题意得13r24r2813524228,解得 r 7.8.(2019济南调研)祖暅(公元前 56 世纪),祖冲之之子,是我国齐梁时代的数学家.他提出了一条原理:“幂势既同,则积不容异.”这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.该原理在西方直到十七世纪才由意大利数学家卡瓦列利发现,比祖暅晚一千一百多年.椭球体是椭圆绕其轴旋转所成的旋转体.如图将底面直径皆为 2b,高皆为 a 的椭半球体及已被挖去了圆锥体的圆柱体放置于同一平面 上.以平行于平面 的平面于距平面 任意高 d 处可横截得到 S圆及 S环两截面,可以证明 S圆S环总成立.据此,短轴长为 4 cm,长轴为 6 cm 的椭球体的体积是_ cm3.【答案】16【解析】因为总有 S圆S环,所以椭半球体的体积等于 V柱V锥b2a13b2a23b2a,椭球体的体积为 V43b2a.因为 2b4,2a6,所以 b2,a3,所以,该椭球体的体积是4322316(cm3).三、解答题 9.如图所示,正四棱台的高是 17 cm,两底面边长分别为 4 cm 和 16 cm,求棱台的侧棱长和斜高.精品 拼搏 【答案】见解析【解析】设棱台两底面的中心分别为 O和 O,BC,BC 的中点分别为 E,E,连接 OB,OE,OO,OE,OB,EE,则四边形 OEEO,OBBO均为直角梯形.在正方形 ABCD 中,BC16 cm,则 OB8 2 cm,OE8 cm,在正方形 ABCD中,BC4 cm,则 OB2 2 cm,OE2 cm,在直角梯形 OOBB中,BB OO2(OBOB)219(cm);在直角梯形 OOEE中,EE OO2(OEOE)25 13(cm).所以这个棱台的侧棱长为 19 cm,斜高为 5 13 cm.10.现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥 PA1B1C1D1,下部的形状是正四棱柱 ABCDA1B1C1D1(如图所示),并要求正四棱柱的高 O1O 是正四棱锥的高 PO1的 4 倍,若 AB6 m,PO12 m,则仓库的容积是多少?【答案】见解析【解析】由 PO12 m,知 O1O4PO18 m.因为 A1B1AB6 m,所以正四棱锥 PA1B1C1D1的体积 V锥13A1B21PO11362224(m3);正四棱柱 ABCDA1B1C1D1的体积 V柱AB2O1O628288(m3),所以仓库的容积 VV锥V柱24288312(m3).故仓库的容积是 312 m3.精品 拼搏【能力提升题组】(建议用时:20 分钟)11.(2019石家庄模拟)用长度分别为 2,3,5,6,9(单位:cm)的五根木棒连接(只允许连接,不允许折断),组成共顶点的长方体的三条棱,则能够得到的长方体的最大表面积为()A.258 cm2 B.414 cm2 C.416 cm2 D.418 cm2【答案】C【解析】设长方体从同一顶点出发的三条棱的长分别为 a,b,c,则长方体的表面积 S2(abbcac)12(ab)2(bc)2(ac)2,当且仅当 abc 时上式“”成立.由题意可知,a,b,c,不可能相等,故当 a,b,c 的大小最接近时,长方体的表面积最大,此时从同一顶点出发的三条棱的长为 8,8,9,用长度为 2,6 的木棒连接,长度为 3,5 的木棒连接各为一条棱,长度为 9 的木棒为第三条棱,组成长方体,此时能够得到的长方体的最大表面积为 2(888989)416(cm2).12.已知三棱锥 SABC 的所有顶点都在球 O 的球面上,ABC 是边长为 1 的正三角形,SC 为球 O 的直径,且 SC2,则此棱锥的体积为()A.26 B.36 C.23 D.22【答案】A【解析】由于三棱锥 SABC 与三棱锥 OABC 底面都是ABC,O 是 SC 的中点,因此三棱锥 SABC的高是三棱锥 OABC 高的 2 倍,所以三棱锥 SABC 的体积也是三棱锥 OABC 体积的 2 倍.在三棱锥 OABC 中,其棱长都是 1,如图所示,SABC34AB234,高 OD1233263,VSABC2VOABC213346326.精品 拼搏 13.如图所示,在透明塑料制成的长方体 ABCDA1B1C1D1容器中灌进一些水,将容器底面一边 BC 固定于地面上,再将容器倾斜,随着倾斜程度的不同,以下命题:水的形状成棱柱状;水面 EFGH 的面积不变;A1D1始终与水面 EFGH 平行.其中正确命题的序号是_.【答案】【解析】如图所示为水面的三种不同形状,中形状显然为棱柱,为以 ABFE 和 DCGH 为两个底面,其他为侧面的棱柱,为以 BEF 和 CHG 为底面,其他面为侧面的棱柱,故正确;水面的形状会随倾斜程度的不同而不同.如中水面形状均为矩形,但边长不同,其面积也不同,故不正确;因为水面在运动过程中保持与边 BC 平行,而 BC 与 A1D1平行,故 A1D1始终与水面 EFGH 平行,则正确,故正确命题的序号是.14.如图,长方体 ABCDA1B1C1D1中,AB16,BC10,AA18,点 E,F 分别在 A1B1,D1C1上,A1ED1F4.过点 E,F 的平面 与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求平面 把该长方体分成的两部分体积的比值.【答案】见解析【解析】(1)交线围成的正方形 EHGF 如图所示.(2)如图,作 EMAB,垂足为 M,则 AMA1E4,EB112,EMAA18.精品 拼搏 因为四边形 EHGF 为正方形,所以 EHEFBC10.于是 MH EH2EM26,AH10,HB6.故 S四边形A1EHA12(410)856,S四边形EB1BH12(126)872.因为长方体被平面 分成两个高为 10 的直棱柱,所以其体积的比值为9779也正确.精品 拼搏