统计学实训练习题.pdf
统计学实训一练习题【练习 1。1】表中是 8 名学生 4 门课程的考试成绩数据(单位:分),试找出统计学成绩等于 75 分的学生,英语成绩最高的前三名学生,四门课程成绩都大于70 分的学生。数据见表 1。1 姓名 统计学成绩 数学成绩 英语成绩 经济学成绩 赵颖 75 96 81 83 袁方 75 58 76 90 姓名 统计学成绩 数学成绩 英语成绩 经济学成绩 王翔 91 75 95 94 陈风 87 76 92 77 李华 81 60 86 64 姓名 统计学成绩 数学成绩 英语成绩 经济学成绩 王翔 91 75 95 94 赵颖 75 96 81 83 陈风 87 76 92 77 【练习 1.2】表中是 8 名学生 4 门课程的考试成绩数据(单位:分),试分别按统计学成绩的升序和英语成绩的降序排序。数据见表 1.2 按统计学成绩排序 姓名 统计学成绩 数学成绩 英语成绩 经济学成绩 田雨 54 88 67 78 张松 69 68 84 86 赵颖 75 96 81 83 袁方 75 58 76 90 李华 81 60 86 64 宋媛 83 72 66 71 陈风 87 76 92 77 王翔 91 75 95 94 按英语成绩排序 姓名 统计学成绩 数学成绩 英语成绩 经济学成绩 王翔 91 75 95 94 陈风 87 76 92 77 李华 81 60 86 64 张松 69 68 84 86 赵颖 75 96 81 83 袁方 75 58 76 90 田雨 54 88 67 78 宋媛 83 72 66 71 【练习 1.3】在某大学随机抽取 30 名学生,调查他们的性别、家庭所在地、平均月生活费支出、平均每月购买衣物支出和购买衣物时所考虑的首要因素等,得到的数据如表所示.试建立一个数据透视表,在表的行变量中给出性别和买衣物首选因素,在列变量中给出学生的家庭所在地区,对平均月生活费和月平均衣物支出进行交叉汇总。数据见表 1。3 家庭所在地区 性别 买衣物首选因素 数据 大型城市 乡镇地区 中小城市 总计 男 价格 求和项:平均月生活费(元)1100 1800 400 3300 求和项:月平均衣物支出(元)230 180 40 450 款式 求和项:平均月生活费(元)500 3000 3500 求和项:月平均衣物支出(元)150 800 950 品牌 求和项:平均月生活费(元)1000 800 1600 3400 求和项:月平均衣物支出(元)300 240 480 1020 男 求和项:平均月生活费(元)2600 2600 5000 10200 男 求和项:月平均衣物支出(元)680 420 1320 2420 女 价格 求和项:平均月生活费(元)700 400 2600 3700 求和项:月平均衣物支出(元)230 120 465 815 款式 求和项:平均月生活费(元)2100 1100 3200 求和项:月平均衣物支出(元)600 330 930 品牌 求和项:平均月生活费(元)500 800 1300 求和项:月平均衣物支出(元)50 80 130 女 求和项:平均月生活费(元)3300 1200 3700 8200 女 求和项:月平均衣物支出(元)880 200 795 1875 求和项:平均月生活费(元)汇总 5900 3800 8700 18400 求和项:月平均衣物支出(元)汇总 1560 620 2115 4295 【练习 1.4】一家市场调查公司为研究不同类型饮料的市场占有率,对随机抽取的一家超市进行调查。下面的表是调查员随机观察的 50 名顾客购买的饮料类型记录.要求:1、生成一张频数分布表,观察不同类型饮料的销售分布状况。2、绘制条形图和饼图.数据见表 1.4 计数项:饮料类型 饮料类型 汇总 频率 果汁 6 12 矿泉水 10 20 绿茶 11 22 其他 8 16 碳酸饮料 15 30 总计 50 100 【练习 1。5】某电脑公司 2002 年前四个月各天的销售量数据如表所示(单位:台),要求:对数据进行分组,编制频数分布表,并绘制直方图。数据见表1.5 按销售量分组(台)频数(天)频率()140149 4 3.33 150159 9 7。50 160169 16 13.33 170179 27 22。50 180189 20 16。67 190199 17 14。17 200209 10 8。33 210219 8 6。67 220229 4 3。33 230239 5 4.17 合计 120 100 统计学实训二练习题【练习 2。1】一家汽车零售店的 10 名销售人员 5 月份销售的汽车数量(单位:台)排序后如下:2 4 7 10 10 10 12 12 14 15 (数据见表 2。1)要求:(1)用 EXCEL 计算汽车销售量的众数、中位数和平均数。(2)用 EXCEL 计算四分位数。(3)用 EXCEL 计算销售量的标准差。(4)说明汽车销售量分布的特征。特征:1、集中趋势:集中 2、离散程度:比较稳定 3、偏斜程度:对称分布 【练习 2。2】随机抽取 25 个网络用户,得到他们的年龄数据,见表 2。2,要求:(1)用 EXCEL 计算众数、中位数。(2)用 EXCEL 计算四分位数。(3)用 EXCEL 计算平均数和标准差。(4)用 EXCEL 计算偏态系数和峰态系数.(5)对网民年龄的分布特征进行综合分析。特征:1、集中趋势:集中 2、离散程度:比较稳定 3、偏斜程度:高度右偏,尖峰分布 【练习 2。3】某百货公司 6 月份各天的销售额数据见表 2。3,要求:(1)用 EXCEL 计算该百货公司日销售额的平均数和中位数.(2)用 EXCEL 计算四分位数。(3)用 EXCEL 计算日销售额的标准差。平均数 274.1 中位数 272。5 上四分位数 261。5 下四分位数 289.25 标准差 21.17 平均数 10 中位数 10 众数 10 下四分位数 8 上四分位数 12 标准差 4 众数 19 中位数 23 上四分位数 19 下四分位数 27 平均数 24 标准差 6。65 偏态系数 1。08 峰态系数 0。77 【练习 2.4】表 2。4 是某电脑公司 2013 年前 4 个月每天的销售量数据(单位:台)。要求:用 EXCEL 的“描述统计”命令计算出各描述统计量。平均 184.5666667 标准误差 1。97915373 中位数 182 众数 196 标准差 21。68054285 方差 470。0459384 峰度-0.224356161 偏度 0.405284783 区域 96 最小值 141 最大值 237 求和 22148 观测数 120 最大(1)237 最小(1)141 置信度(95.0%)3.918922009 统计学实训三练习题【练习 3。1】从某一行业中随机抽取 12 家企业,所得产量与生产费用的数据如表 3。1 所示,要求:(1)用 EXCEL 绘制产量与生产费用的散点图,判断二者之间的关系形态。(2)用 EXCEL 计算产量与生产费用之间的相关系数.关系形态:高度正线性相关,即随着产量的增加,生产费用也增加。相关系数 0。920232 【练习3。2】学生在期末考试之前用于复习的时间(单位:小时)和考试分数(单位:分)之间是否有相关?为研究这一问题,一位研究者抽取了由 8 名学生构成的一个随机样本,得到的数据如表 3.2 所示,要求:(1)用 EXCEL 绘制复习时间和考试分数的散点图,判断二者之间的关系形态。(2)用 EXCEL 计算相关系数,说明两个变量之间的关系强度.关系形态:高度正线性相关,即随着复习时间的增加,考试分数也增加.相关系数 0。862109 关系强度:高度正相关 生产费用与产量关系020406080100120140160180200050100150产量生产费用生产费用(万元)线性(生产费用(万元))考试分数与复习时间关系0102030405060708090100010203040复习时间考试分数考试分数y线性(考试分数y)【练习 3.3】一家物流公司的管理人员想研究货物的运送距离和运送时间的关系,为此,他抽出了公司最近 10 辆卡车运货记录的随机样本,得到运送距离(单位:公里)和运送时间(单位:天)的数据如表 3。3 所示,要求:(1)用 EXCEL 绘制运送距离和运送时间的散点图,判断二者之间的关系形态.(2)用 EXCEL 计算相关系数,说明两个变量之间的关系强度。(3)用 EXCEL 求出估计的回归方程,并解释回归系数的实际意义。关系形态:高度正线性相关,即随着运送距离的增加,运送 时 间 也 增加。相关系数 0.948943 回归系数的实际意义:运送每增加1 公里,运送时间增加0.0036个天.【练习 3。4】表 3。4 是 7 个地区的人均国内生产总值和人均消费水平的统计数据,要求:(1)用 EXCEL 绘制散点图,说明二者之间的关系形态。(2)用EXCEL计算两个变量之间的相关系数,说明两个变量之间的关系强度。(3)用计算估计的回归方程,并解释回归系数的实际意义。关系形态:高度正线性相关,即随着人均 GDP增加,人均消费水平也增加.相关系数 0。99812796 关系强度:高度正相关 回归系数的实际意义,人均 GDP 每增加 1 个单位,人均消费水平增加 1 元。运送时间与运送距离的关系y=0.0036x+0.11810.01.02.03.04.05.06.0050010001500运送距离运送时间运送时间y线性(运送时间y)人均消费水平与人均GDP关系y=0.3087x+734.6902000400060008000100001200014000010000200003000040000人均GDP人均消费水平人均消费水平(元)线性(人均消费水平(元))统计学实训四练习题【练习 4.1】表 4.1 是 1981-2000 年我国油菜子单位面积产量数据,要求:用 5期移动平均法预测 2001 年的单位面积产量。年份 单位面积产量 移动平均预测 1981 1451 k=5 预测误差 误差平方 1982 1372 1983 1168 1984 1232 1985 1245 1986 1200 1293。6 93.6 8760.96 1987 1260 1243。4 16。6 275。56 1988 1020 1221-201 40401.00 1989 1095 1191。4-96。4 9292。96 1990 1260 1164 96 9216。00 1991 1215 1167 48 2304.00 1992 1281 1170 111 12321.00 1993 1309 1174.2 134.8 18171。04 1994 1296 1232 64 4096。00 1995 1416 1272。2 143。8 20678。44 1996 1367 1303.4 63.6 4044。96 1997 1479 1333.8 145。2 21083.04 1998 1272 1373.4 101。4 10281。96 1999 1469 1366 103 10609.00 2000 1519 1400。6 118。4 14018。56 1421.2 12370。30 2001 年预测值:1421。2 【练习 4。2】表 4.2 是一家旅馆过去 18 个月的营业额数据,要求:用 3 期移动平均法预测第 19 个月的营业额。月份 营业额(万元)移动平均预测 1 295 k=3 预测误差 误差平方 2 283 3 322 4 355 300。00 55.00 3025.00 5 286 320。00 34.00 1156。00 6 379 321.00 58。00 3364。00 7 381 340。00 41。00 1681。00 8 431 348。67 82。33 6778。78 9 424 397.00 27。00 729。00 10 473 412.00 61.00 3721.00 11 470 442。67 27.33 747。11 12 481 455。67 25。33 641。78 13 449 474.67 25.67 658.78 14 544 466.67 77。33 5980。44 15 601 491.33 109.67 12026.78 16 587 531.33 55.67 3098。78 17 644 577。33 66。67 4444。44 18 660 610.67 49.33 2433.78 630。33 3365。78 预测第 19 个月的营业额 630.33 【练习 4.3】表 4.3 是 1981-2000 年我国财政用于文教、卫生、科技事业费用支出数据。要求:(1)绘制时间序列图描述其趋势。(2)选择一条合适的趋势线拟合数据,并根据趋势线预测 2001 年的支出额。预测 2001 年的支出额:3338.24 图表标题y=145.78e0.1491xR2=0.99680500100015002000250030003500135791113151719支出(万元)指数(支出(万元))【练习 4。4】表 4。4 是 1964-1999 年我国的纱产量数据。要求:(1)绘制时间序列图描述其趋势。(2)选择一条合适的趋势线拟合数据,并根据趋势线预测 2000 年的纱产量.图表标题y=0.108x2+9.9529x+94.832R2=0.97090.0100.0200.0300.0400.0500.0600.0700.013579 11 13 15 17 19 21 23 25 27 29 31 33 35纱产量多项式(纱产量)预测 2000 年的纱产量:610。9413