高一数学下册《抽样》知识点复习.docx
高一数学下册抽样知识点复习高一数学下册平面学问点复习 高一数学下册平面学问点复习 两个平面的位置关系: (1)两个平面相互平行的定义:空间两平面没有公共点 (2)两个平面的位置关系: 两个平面平行-没有公共点;两个平面相交-有一条公共直线。 a、平行 两个平面平行的判定定理:假如一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。 两个平面平行的性质定理:假如两个平行平面同时和第三个平面相交,那么交线平行。 b、相交 二面角 (1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。 (2)二面角:从一条直线动身的两个半平面所组成的图形叫做二面角。二面角的取值范围为0°,180° (3)二面角的棱:这一条直线叫做二面角的棱。 (4)二面角的面:这两个半平面叫做二面角的面。 (5)二面角的平面角:以二面角的棱上随意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。 (6)直二面角:平面角是直角的二面角叫做直二面角。 两平面垂直 两平面垂直的定义:两平面相交,假如所成的角是直二面角,就说这两个平面相互垂直。记为 两平面垂直的判定定理:假如一个平面经过另一个平面的一条垂线,那么这两个平面相互垂直 两个平面垂直的性质定理:假如两个平面相互垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。 Attention: 二面角求法:干脆法(作出平面角)、三垂线定理及逆定理、面积射影定理、空间向量之法向量法(留意求出的角与所须要求的角之间的等补关系)多面体 棱柱 棱柱的定义:有两个面相互平行,其余各面都是四边形,并且每两个四边形的公共边都相互平行,这些面围成的几何体叫做棱柱。 棱柱的性质 (1)侧棱都相等,侧面是平行四边形 (2)两个底面与平行于底面的截面是全等的多边形 (3)过不相邻的两条侧棱的截面(对角面)是平行四边形 棱锥 棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥 棱锥的性质: (1)侧棱交于一点。侧面都是三角形 (2)平行于底面的截面与底面是相像的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方 正棱锥 正棱锥的定义:假如一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。 正棱锥的性质: (1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。 (3)多个特别的直角三角形 a、相邻两侧棱相互垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。 b、四面体中有三对异面直线,若有两对相互垂直,则可得第三对也相互垂直。且顶点在底面的射影为底面三角形的垂心。 练习题: 一个钝角与一个锐角的差是() A、锐角 B、钝角 C、直角 D、不能确定 下列说法正确的是() A、角的边越长,角越大 B、在ABC一边的延长线上取一点D C、B=ABC+DBC D、以上都不对 下列说法中正确的是() A、角是由两条射线组成的图形 B、一条射线就是一个周角 C、两条直线相交,只有一个交点 D、假如线段AB=BC,那么B叫做线段AB的中点 同一平面内互不重合的三条直线的交点的个数是() A、可能是0个,1个,2个 B、可能是0个,2个,3个 C、可能是0个,1个,2个或3个 D、可能是1个可3个 高一数学下册数列学问点复习人教版 高一数学下册数列学问点复习人教版 1数列的定义 按肯定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项. (1)从数列定义可以看出,数列的数是按肯定次序排列的,假如组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列. (2)在数列的定义中并没有规定数列中的数必需不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,构成数列:-1,1,-1,1,. (4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n. (5)次序对于数列来讲是非常重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,明显数列与数集有本质的区分.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而2,3,4,5,6中元素不论按怎样的次序排列都是同一个集合. 2数列的分类 (1)依据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列.在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,2n-1表示有穷数列,假如把数列写成1,3,5,7,9,或1,3,5,7,9,2n-1,它就表示无穷数列. (2)根据项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摇摆数列、常数列. 3数列的通项公式 数列是按肯定次序排列的一列数,其内涵的本质属性是确定这一列数的规律,这个规律通常是用式子f(n)来表示的, 这两个通项公式形式上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,又不肯定是唯一的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能确定的,通项公式更非唯一.如:数列1,2,3,4, 由公式写出的后续项就不一样了,因此,通项公式的归纳不仅要看它的前几项,更要依据数列的构成规律,多视察分析,真正找到数列的内在规律,由数列前几项写出其通项公式,没有通用的方法可循. 再强调对于数列通项公式的理解留意以下几点: (1)数列的通项公式事实上是一个以正整数集N*或它的有限子集1,2,n为定义域的函数的表达式. (2)假如知道了数列的通项公式,那么依次用1,2,3,去替代公式中的n就可以求出这个数列的各项;同时,用数列的通项公式也可推断某数是否是某数列中的一项,假如是的话,是第几项. (3)如全部的函数关系不肯定都有解析式一样,并不是全部的数列都有通项公式. 如2的不足近似值,精确到1,0.1,0.01,0.001,0.0001,所构成的数列1,1.4,1.41,1.414,1.4142,就没有通项公式. (4)有的数列的通项公式,形式上不肯定是唯一的,正如举例中的: (5)有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不唯一. 4数列的图象 对于数列4,5,6,7,8,9,10每一项的序号与这一项有下面的对应关系: 序号:1234567 项:45678910 这就是说,上面可以看成是一个序号集合到另一个数的集合的映射.因此,从映射、函数的观点看,数列可以看作是一个定义域为正整集N*(或它的有限子集1,2,3,n)的函数,当自变量从小到大依次取值时,对应的一列函数值.这里的函数是一种特别的函数,它的自变量只能取正整数. 由于数列的项是函数值,序号是自变量,数列的通项公式也就是相应函数和解析式. 数列是一种特别的函数,数列是可以用图象直观地表示的. 数列用图象来表示,可以以序号为横坐标,相应的项为纵坐标,描点画图来表示一个数列,在画图时,为便利起见,在平面直角坐标系两条坐标轴上取的单位长度可以不同,从数列的图象表示可以直观地看出数列的改变状况,但不精确. 把数列与函数比较,数列是特别的函数,特别在定义域是正整数集或由以1为首的有限连续正整数组成的集合,其图象是无限个或有限个孤立的点. 5递推数列 一堆钢管,共堆放了七层,自上而下各层的钢管数构成一个数列:4,5,6,7,8,9,10. 数列还可以用如下方法给出:自上而下第一层的钢管数是4,以下每一层的钢管数都比上层的钢管数多1 练习题: 1若等差数列an的前n项和为Sn,且满意S33S221,则数列an的公差是() A.12B1C2D3 解析:由Snna1n(n1)2d,得S33a13d,S22a1d,代入S33S221,得d2,故选C. 答案:C 2已知数列a11,a25,an2an1an(nN*),则a2022等于() A1B4C4D5 解析:由已知,得a11,a25,a34,a41,a55,a64,a71,a85, 故an是以6为周期的数列, a2022a6×3351a11. 答案:A 3设an是等差数列,Sn是其前n项和,且S5S6,S6S7S8,则下列结论错误的是() Ad0Ba70 CS9S5DS6与S7均为Sn的最大值 解析:S5S6,a60.S6S7,a70. 又S7S8,a80. 假设S9S5,则a6a7a8a90,即2(a7a8)0. a70,a80,a7a80.假设不成立,故S9S5.C错误. 答案:C 高一数学下册幂函数学问点复习 高一数学下册幂函数学问点复习 幂函数的性质: 对于a的取值为非零有理数,有必要分成几种状况来探讨各自的特性: 首先我们知道假如a=p/q,q和p都是整数,则x(p/q)=q次根号(x的p次方),假如q是奇数,函数的定义域是R,假如q是偶数,函数的定义域是0,+)。当指数n是负整数时,设a=-k,则x=1/(xk),明显x0,函数的定义域是(-,0)(0,+).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道: 解除了为0与负数两种可能,即对于x0,则a可以是随意实数; 解除了为0这种可能,即对于x0x=0的全部实数,q不能是偶数; 解除了为负数这种可能,即对于x为大于且等于0的全部实数,a就不能是负数。 总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不怜悯况如下:假如a为随意实数,则函数的定义域为大于0的全部实数; 假如a为负数,则x确定不能为0,不过这时函数的定义域还必需依据q的奇偶性来确定,即假如同时q为偶数,则x不能小于0,这时函数的定义域为大于0的全部实数;假如同时q为奇数,则函数的定义域为不等于0的全部实数。 在x大于0时,函数的值域总是大于0的实数。 在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。 而只有a为正数,0才进入函数的值域。 由于x大于0是对a的随意取值都有意义的,因此下面给出幂函数在第一象限的各自状况. 可以看到: (1)全部的图形都通过(1,1)这点。 (2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。 (3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。 (4)当a小于0时,a越小,图形倾斜程度越大。 (5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。 (6)明显幂函数无界。 解题方法:换元法 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这种方法叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换探讨对象,将问题移至新对象的学问背景中去探讨,从而使非标准型问题标准化、困难问题简洁化,变得简单处理。 换元法又称协助元素法、变量代换法.通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来.或者变为熟识的形式,把困难的计算和推证简化。 它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在探讨方程、不等式、函数、数列、三角等问题中有广泛的应用。 练习题: 1、若f(x)=x2x+b,且f(log2a)=b,log2f(a)=2(a1). (1)求f(log2x)的最小值及对应的x值; (2)x取何值时,f(log2x)f(1)且log2f(x)f(1)? 2、已知函数f(x)=3x+k(k为常数),A(2k,2)是函数y=f1(x)图象上的点. (1)求实数k的值及函数f1(x)的解析式; (2)将y=f1(x)的图象按向量a=(3,0)平移,得到函数y=g(x)的图象,若2f1(x+3)g(x)1恒成立,试求实数m的取值范围. 答案: 1、解:(1)A(2k,2)是函数y=f1(x)图象上的点, B(2,2k)是函数y=f(x)上的点. 2k=32+k.k=3. f(x)=3x3. y=f1(x)=log3(x+3)(x3). (2)将y=f1(x)的图象按向量a=(3,0)平移,得到函数y=g(x)=log3x(x0),要使2f1(x+3)g(x)1恒成立,即使2log3(x+)log3x1恒成立,所以有x+23在x0时恒成立,只要(x+2)min3. 又x+2(当且仅当x=,即x=时等号成立),(x+2)min=4,即43.m. 2、y=(a2x)loga2()=loga(a2x)loga(ax) =(2+logax)(1+logax)=(logax+)2, 2x4且y0,logax+=0,即x=时,ymin=. x21,10a1. 又y的最大值为0时,logax+2=0或logax+1=0, 即x=或x=.=4或=2. 又0a1,a=. 高一数学下册集合学问点 高一数学下册集合学问点 一、集合有关概念 1.集合的含义 2.集合的中元素的三个特性: (1)元素的确定性如:世界上最高的山 (2)元素的互异性如:由HAPPY的字母组成的集合H,A,P,Y (3)元素的无序性:如:a,b,c和a,c,b是表示同一个集合 3.集合的表示:如:我校的篮球队员,太平洋,大西洋,印度洋,北冰洋 (1)用拉丁字母表示集合:A=我校的篮球队员,B=1,2,3,4,5 (2)集合的表示方法:列举法与描述法。 留意:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集N*或N+整数集Z有理数集Q实数集R 1)列举法:a,b,c 2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。xR|x-32,x|x-32 3)语言描述法:例:不是直角三角形的三角形 4)Venn图: 4、集合的分类: (1)有限集含有有限个元素的集合 (2)无限集含有无限个元素的集合 (3)空集不含任何元素的集合例:x|x2=-5 二、集合间的基本关系 1.“包含”关系子集 留意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA 2.“相等”关系:A=B(55,且55,则5=5) 实例:设A=x|x2-1=0B=-1,1“元素相同则两集合相等” 即:任何一个集合是它本身的子集。AA 真子集:假如AB,且AB那就说集合A是集合B的真子集,记作AB(或BA) 假如AB,BC,那么AC 假如AB同时BA那么A=B 3.不含任何元素的集合叫做空集,记为 规定:空集是任何集合的子集,空集是任何非空集合的真子集。 练习题: 1(2022年高考广东卷)若集合Ax|2x1,Bx|0x2,则集合AB() Ax|1x1Bx|2x1 Cx|2x2Dx|0x1 解析:选D.因为Ax|2x1,Bx|0x2,所以ABx|0x1 2(2022年高考湖南卷)已知集合M1,2,3,N2,3,4则() AMNBNM CMN2,3DMN1,4 解析:选C.M1,2,3,N2,3,4 选项A、B明显不对MN1,2,3,4, 选项D错误又MN2,3,故选C. 3已知集合My|yx2,Ny|xy2,则MN() A(0,0),(1,1)B0,1 Cy|y0Dy|0y1 解析:选C.My|y0,NR,MNMy|y0 4已知集合Ax|x2,Bx|xm,且ABA,则实数m的取值范围是_ 解析:ABA,即BA,m2. 答案:m2 第17页 共17页第 17 页 共 17 页第 17 页 共 17 页第 17 页 共 17 页第 17 页 共 17 页第 17 页 共 17 页第 17 页 共 17 页第 17 页 共 17 页第 17 页 共 17 页第 17 页 共 17 页第 17 页 共 17 页